Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Nat Prod Res ; 37(13): 2279-2284, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35073791

ABSTRACT

Structural modifications are an important tool for studying the properties of naturally occurring polyphenols. Regarding the preparation of acetyl esters, the presence of hydroxyl groups stabilized by intramolecular hydrogen bonds may pose an obstacle for the peracetylation of these compounds. In this paper, we present a facile protocol for the acetylation of selected polyphenols under mild reaction conditions by using acetic anhydride, catalytic amount 4-dimethylaminopyridine (DMAP) and dimethylformamide (DMF) as solvent. Reaction conditions were adjusted for optimal formation of peracetylated polyphenols while minimizing the formation of byproducts. Butyric anhydride was employed as an alternative acylating agent and showed similar results. Reaction yields varied from 78-97%, and products were obtained in high purity, as determined by LCMS(ESI+), 1H NMR and 13C NMR.


Subject(s)
Anhydrides , Acetylation , Magnetic Resonance Spectroscopy , Catalysis , Solvents
2.
Trop Med Infect Dis ; 7(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36548658

ABSTRACT

Cancer and parasitic diseases, such as leishmaniasis and Chagas disease, share similarities that allow the co-development of new antiproliferative agents as a strategy to quickly track the discovery of new drugs. This strategy is especially interesting regarding tropical neglected diseases, for which chemotherapeutic alternatives are extremely outdated. We designed a series of (E)-3-aryl-5-(2-aryl-vinyl)-1,2,4-oxadiazoles based on the reported antiparasitic and anticancer activities of structurally related compounds. The synthesis of such compounds led to the development of a new, fast, and efficient strategy for the construction of a 1,2,4-oxadiazole ring on a silica-supported system under microwave irradiation. One hit compound (23) was identified during the in vitro evaluation against drug-sensitive and drug-resistant chronic myeloid leukemia cell lines (EC50 values ranging from 5.5 to 13.2 µM), Trypanosoma cruzi amastigotes (EC50 = 2.9 µM) and Leishmania amazonensis promastigotes (EC50 = 12.2 µM) and amastigotes (EC50 = 13.5 µM). In silico studies indicate a correlation between the in vitro activity and the interaction with tubulin at the colchicine binding site. Furthermore, ADMET in silico predictions indicate that the compounds possess a high druggability potential due to their physicochemical, pharmacokinetic, and toxicity profiles, and for hit 23, it was identified by multiple spectroscopic approaches that this compound binds with human serum albumin (HSA) via a spontaneous ground-state association with a moderate affinity driven by entropically and enthalpically energies into subdomain IIA (site I) without significantly perturbing the secondary content of the protein.

3.
Medicines (Basel) ; 9(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35736250

ABSTRACT

Fungal infections are the most common secondary infections in debilitated individuals in a state of chronic disease or immunosuppression. Despite this, most fungal infections are neglected, mainly due to the lower frequency of their more severe clinical forms in immunocompetent individuals with a healthy background. However, over the past few years, several cases of severe fungal infections in healthy individuals have provoked a change in the epidemiological dynamics of fungal infections around the world, both due to recurrent outbreaks in previously infrequent regions and the greater emergence of more pathogenic fungal variants affecting healthy individuals, such as in the Cryptococcus genus. Therefore, before the arrival of a scenario of prevalent severe fungal infections, it is necessary to assess more carefully what are the real reasons for the increased incidence of fungal infection globally. What are the factors that are currently contributing to this new possible epidemiological dynamic? Could these be of a structural nature? Herein, we propose a discussion based on the importance of the virulence factors of glycoconjugate composition in the adaptation of pathogenic fungal species into the current scenario of increasing severity of these infections.

4.
PLoS One ; 16(10): e0258292, 2021.
Article in English | MEDLINE | ID: mdl-34679091

ABSTRACT

Chagas disease is a neglected illness caused by Trypanosoma cruzi and its treatment is done only with two drugs, nifurtimox and benznidazole. However, both drugs are ineffective in the chronic phase, in addition to causing serious side effects. This context of therapeutic limitation justifies the continuous research for alternative drugs. Here, we study the in vitro trypanocidal effects of the non-steroidal anti-inflammatory drug nimesulide, a molecule that has in its chemical structure a toxicophoric nitroaromatic group (NO2). The set of results obtained in this work highlights the potential for repurposing nimesulide in the treatment of this disease that affects millions of people around the world.


Subject(s)
Chagas Disease/drug therapy , Chagas Disease/parasitology , Drug Repositioning , Sulfonamides/therapeutic use , Trypanosoma cruzi/physiology , Animals , Cell Death/drug effects , Cell Survival/drug effects , Life Cycle Stages/drug effects , Mice, Inbred BALB C , Parasites/drug effects , Sulfonamides/chemistry , Sulfonamides/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/ultrastructure
5.
Medicines (Basel) ; 8(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34677488

ABSTRACT

The pathology associated with COVID-19 infection is progressively being revealed. Recent postmortem assessments have revealed acute airway inflammation as well as diffuse alveolar damage, which bears resemblance to severe acute respiratory syndromes induced by both SARS-CoV and MERS-CoV infections. Although recent papers have highlighted some neuropathologies associated with COVID-19 infection, little is known about this topic of great importance in the area of public health. Here, we discuss how neuroinflammation related to COVID-19 could be triggered by direct viral neuroinvasion and/or cytokine release over the course of the infection.

6.
Medicines (Basel) ; 7(4)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276474

ABSTRACT

Background: Piperine, an amide extracted from the Piper spices, exhibits strong anti-tumor properties. However, its effect on the epithelial-mesenchymal transition (EMT) process has never been investigated. Herein, we evaluate the toxic effect of piperine on lung adenocarcinoma (A549), breast adenocarcinoma (MDA-MB-231) and hepatocellular carcinoma (HepG2) cell lines, as well as its ability to inhibit EMT-related events induced by TGF-ß1 treatment. Methods: The cell viability was investigated by MTT assay. Protein expression was evaluated by Western blot. Gene expression was monitored by real-time PCR. Zymography assay was employed to detect metalloproteinase (MMP) activity in conditioned media. Cell motility was assessed by the wound-healing and phagokinetic gold sol assays. Results: The results revealed that piperine was cytotoxic in concentrations over 100 µM, showing IC50 values for HepG2, MDA-MB-231 and A549 cell lines of 214, 238 and 198 µM, respectively. In order to investigate whether piperine would reverse the TGF-ß1 induced-EMT, the A549 cell line was pretreated with sublethal concentrations of the natural amide followed by the addition of TGF-ß1. Besides disrupting EMT-related events, piperine also inhibited both ERK 1/2 and SMAD 2 phosphorylation. Conclusions: These results suggest that piperine might be further used in therapeutic strategies for metastatic cancer and EMT-related disorders.

7.
Toxins (Basel) ; 8(11)2016 10 31.
Article in English | MEDLINE | ID: mdl-27809242

ABSTRACT

Piperine is an abundant amide extracted from black pepper seeds which has been shown to have protective effects against cytotoxic and genotoxic carcinogenesis induced by certain chemical carcinogens and aflatoxin B1 (AFB1) in vitro. The aim of this work was to study, in vivo, the antigenotoxic potential of feed-added piperine on broiler chickens experimentally intoxicated with AFB1, using micronucleus and comet assays. The antigenotoxicity assessment of 9-day-old chicks was performed on a total of 60 chickens divided into four groups of 15 broilers each: (C) control, (P) 60 mg·piperine kg-1 feed, (A) 0.5 mg·AFB1·kg-1 body weight, (daily by oral route), and (P + A) co-treatment with piperine and AFB1. The experiment was conducted for 26 days. Chicks intoxicated with AFB1 showed significant genotoxic effects in the first 24 h post intoxication, and the effects remained in the other periods analyzed (48, 72, and 96 h and 26 days of treatment). The DNA damage in peripheral blood cells, the number of erythrocytes with micronuclei, and polychromatic-to-normochromatic erythrocyte ratio were significantly reduced or absent in the piperine/AFB1 group. No significant differences were observed between the group piperine/AFB1 and the control and piperine-alone groups. The addition 60 mg·kg-1 of piperine to the diet of the broiler chicks was safe, promoting beneficial effects in poultry health with respect to the toxic effects 0.5 mg·AFB1·kg-1 body weight.


Subject(s)
Aflatoxin B1/toxicity , Alkaloids/pharmacology , Anticarcinogenic Agents/pharmacology , Benzodioxoles/pharmacology , Carcinogens/toxicity , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Animal Feed , Animals , Chickens , Comet Assay , DNA Damage , Diet/veterinary , Eating/drug effects , Male , Micronucleus Tests , Weight Gain/drug effects
8.
PLoS One ; 11(9): e0162926, 2016.
Article in English | MEDLINE | ID: mdl-27658305

ABSTRACT

Curcumin (CUR) is the major constituent of the rhizomes of Curcuma longa and has been widely investigated for its chemotherapeutic properties. The well-known activity of CUR against Leishmania sp., Trypanosoma brucei and Plasmodium falciparum led us to investigate its activity against Trypanosoma cruzi. In this work, we tested the cytotoxic effects of CUR and other natural curcuminoids on different forms of T. cruzi, as well as the ultrastructural changes induced in epimastigote form of the parasite. CUR was verified as the curcuminoid with more significant trypanocidal properties (IC50 10.13 µM on epimastigotes). Demethoxycurcumin (DMC) was equipotent to CUR (IC50 11.07 µM), but bisdemethoxycurcumin (BDMC) was less active (IC50 45.33 µM) and cyclocurcumin (CC) was inactive. In the experiment with infected murine peritoneal macrophages all diarylheptanoids were more active than the control in the inhibition of the trypomastigotes release. The electron microscopy images showed ultrastructural changes associated with the cytoskeleton of the parasite, indicating tubulin as possible target of CUR in T. cruzi. The results obtained by flow cytometry analysis of DNA content of the parasites treated with natural curcuminoids suggested a mechanism of action on microtubules related to the paclitaxel`s mode of action. To better understand the mechanism of action highlighted by electron microscopy and flow cytometry experiments we performed the molecular docking of natural curcuminoids on tubulin of T. cruzi in a homology model and the results obtained showed that the observed interactions are in accordance with the IC50 values found, since there CUR and DMC perform similar interactions at the binding site on tubulin while BDMC do not realize a hydrogen bond with Lys163 residue due to the absence of methoxyl groups. These results indicate that trypanocidal properties of CUR may be related to the cytoskeletal alterations.

9.
Rev Bras Parasitol Vet ; 16(2): 87-91, 2007.
Article in Portuguese | MEDLINE | ID: mdl-17706010

ABSTRACT

The insecticide activity of piperine, cinamoil amide, and tetrahydropiperine against Lucilia cuprina and Musca domestica adults were conducted at the Federal Rural University of Rio de Janeiro. Chemicals were topically applied on thoracic areas of the flies and the toxicity was determined after 24 and 48 hr post treatment and LD50 were calculated using Probit Analysis. Tetrahydropiperine (THP amide) was the only substance which demonstrated insecticide activity against both species of flies. LD50 against L. cuprina and M. domestica were 16.25 and 7.65 microg/fly, respectively, after 24 hr of treatment. Similar results were observed after 48 hr post treatment because the LD50's were 18.03 and 6.57 microg/fly, respectively. Males of L. cuprina were more resistant to tetrahydropiperine than females. However females of M. domestica were more resistant to the insecticide than males.


Subject(s)
Alkaloids , Benzodioxoles , Houseflies , Insecticides , Piper nigrum , Piperidines , Polyunsaturated Alkamides , Animals , Diptera
SELECTION OF CITATIONS
SEARCH DETAIL
...