Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38672673

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of tetrahydrolipstatin (orlistat) on heterotopic glioblastoma in mice by applying MRI and correlating the results with histopathology and immunochemistry. METHODS: Human glioblastoma cells were injected subcutaneously into the groins of immunodeficient mice. After tumor growth of >150 mm3, the animals were assigned into a treatment group (n = 6), which received daily intraperitoneal injections of orlistat, and a control group (n = 7). MRI was performed at the time of randomization and before euthanizing the animals. Tumor volumes were calculated, and signal intensities were analyzed. The internal tumor structure was evaluated visually and with texture analysis. Western blotting and protein expression analysis were performed. RESULTS: At histology, all tumors showed high mitotic and proliferative activity (Ki67 ≥ 10%). Reduced fatty acid synthetase expression was measured in the orlistat group (p < 0.05). Based on the results of morphologic MRI-based analysis, tumor growth remained concentric in the control group and changed to eccentric in the treatment group (p < 0.05). The largest area under the receiver operating curve of the predictors derived from the texture analysis of T2w images was for wavelet transform parameters WavEnHL_s3 and WavEnLH_s4 at 0.96 and 1.00, respectively. CONCLUSIONS: Orlistat showed effects on heterotopically implanted glioblastoma multiforme in MRI studies of mice based on morphologic and texture analysis.

2.
Cancer Rep (Hoboken) ; 4(2): e1324, 2021 04.
Article in English | MEDLINE | ID: mdl-33251771

ABSTRACT

BACKGROUND: Primary adherent glioblastoma cell lines are an important tool in investigating cellular and molecular tumor biology, as well as treatment options for patients. AIM: The phenotypical and immunocytochemical characterization of primary cell lines from glioblastoma specimens during establishment is of great importance, in order to reliably identify these cell lines as primary glioblastoma cell lines. METHODS AND RESULTS: Sixteen primary adherent cell lines out of 34 glioblastoma samples (47%) were established and further characterized. For phenotypical characterization, morphology and growth characteristics of the cells were classified. The cell lines had a high growth rate with a doubling time of 2 to 14 days. Morphologically, the cells displayed spindle-form or polygonal to amorphous shapes and grow as monolayer or in foci without evidence of contact inhibition. The cells were able to migrate and to form colonies. For further characterization, the protein expression of the astrocyte-specific protein glial fibrillary acidic protein (GFAP), the glial marker S100B, the neuronal marker TUBB3, and malignancy marker VIM, as well as the progenitor markers NES and SOX2, the proliferation marker MKI67, and the fibroblast marker TE7 were determined. Based on the immunocytochemical validation criterion of a coexpression of GFAP and S100B, 15 out of these 16 cell lines (94%) were defined as primary glioblastoma cell lines (pGCL). All 15 pGCL expressed TUBB3 and VIM. NES and SOX2 were stained positively in 13/15 and 6/15 pGCL. MKI67 was expressed in 11/15 and TE7 in 2/15 pGCL. CONCLUSION: These results point out that in self-established primary adherent glioblastoma cell lines, the expression of the specific astrocytic and glial markers GFAP and S100B and of the malignancy and progenitor markers VIM, NES, and SOX2 has to be validated. These data show that primary cell lines of glioblastoma origin with high malignant potential are reliably to establish using standardized validation criteria.


Subject(s)
Biomarkers, Tumor/analysis , Brain Neoplasms/pathology , Glial Fibrillary Acidic Protein/analysis , Glioblastoma/pathology , Primary Cell Culture/methods , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Cell Adhesion , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Male , Middle Aged , Tumor Cells, Cultured
3.
Circ Res ; 124(12): e101-e114, 2019 06 07.
Article in English | MEDLINE | ID: mdl-30947629

ABSTRACT

RATIONALE: Delayed ischemic neurological deficit is the most common cause of neurological impairment and unfavorable prognosis in patients with subarachnoid hemorrhage (SAH). Despite the existence of neuroimaging modalities that depict the onset of the accompanying cerebral vasospasm, preventive and therapeutic options are limited and fail to improve outcome owing to an insufficient pathomechanistic understanding of the delayed perfusion deficit. Previous studies have suggested that BOXes (bilirubin oxidation end products), originating from released heme surrounding ruptured blood vessels, are involved in arterial vasoconstriction. Recently, isolated intermediates of oxidative bilirubin degradation, known as PDPs (propentdyopents), have been considered as potential additional effectors in the development of arterial vasoconstriction. OBJECTIVE: To investigate whether PDPs and BOXes are present in hemorrhagic cerebrospinal fluid and involved in the vasoconstriction of cerebral arterioles. METHODS AND RESULTS: Via liquid chromatography/mass spectrometry, we measured increased PDP and BOX concentrations in cerebrospinal fluid of SAH patients compared with control subjects. Using differential interference contrast microscopy, we analyzed the vasoactivity of PDP isomers in vitro by monitoring the arteriolar diameter in mouse acute brain slices. We found an arteriolar constriction on application of PDPs in the concentration range that occurs in the cerebrospinal fluid of patients with SAH. By imaging arteriolar diameter changes using 2-photon microscopy in vivo, we demonstrated a short-onset vasoconstriction after intrathecal injection of either PDPs or BOXes. Using magnetic resonance imaging, we observed a long-term PDP-induced delay in cerebral perfusion. For all conditions, the arteriolar narrowing was dependent on functional big conductance potassium channels and was absent in big conductance potassium channels knockout mice. CONCLUSIONS: For the first time, we have quantified significantly higher concentrations of PDP and BOX isomers in the cerebrospinal fluid of patients with SAH compared to controls. The vasoconstrictive effect caused by PDPs in vitro and in vivo suggests a hitherto unrecognized pathway contributing to the pathogenesis of delayed ischemic deficit in patients with SAH.


Subject(s)
Arterioles/metabolism , Bilirubin/cerebrospinal fluid , Heme/cerebrospinal fluid , Subarachnoid Hemorrhage/cerebrospinal fluid , Vasoconstriction/physiology , Adult , Aged , Aged, 80 and over , Animals , Arterioles/pathology , Cerebrovascular Circulation/physiology , Female , Humans , Male , Mice , Mice, Knockout , Middle Aged , Organ Culture Techniques , Oxidation-Reduction , Subarachnoid Hemorrhage/pathology , Vasospasm, Intracranial/cerebrospinal fluid , Vasospasm, Intracranial/pathology
4.
Mol Neurobiol ; 55(7): 5787-5797, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29079997

ABSTRACT

Quantitative polymerase chain reaction (qPCR) is a sensitive technique for the quantitative analysis of gene expression levels. To compare mRNA transcripts across tumour and non-pathological tissue, appropriate reference genes are required for internal standardisation. Validation of these reference genes in meningiomas has not yet been reported. After mRNA transcription of meningioma (WHO grade I-III) and meningeal tissue from three different experimental sample types (fresh tissue, primary cell cultures and FFPE tissue), 13 candidate reference genes (ACTB, B2M, HPRT, VIM, GAPDH, YWHAZ, EIF4A2, MUC1, ATP5B, GNB2L, TUBB, CYC1, RPL13A) were chosen for quantitative expression analysis. Two statistical algorithms (GeNorm and NormFinder) were used for validation of gene expression stability. All candidate housekeepers tested for stability were checked within and across the three tissue analysis groups. Pearson correlation, the ΔC t method and ranking analysis identified the most non-regulated genes suitable for internal standardisation. TUBB, HPRT and ACTB were the most stably expressed genes for all analysis groups across meningioma and non-pathological meningeal tissue combined. In contrast, analysis of the consistency of reference gene expression within specific meningioma and meningeal tissues resulted in specific reference gene rankings for each tissue type. Future gene expression analyses require reference genes to be chosen that are suitable for the tissue types and for the experimental paradigms being studied. Validation of candidate housekeeper genes in meningiomas for quantitative real-time polymerase chain reaction revealed for the first time TUBB, ACTB and HPRT as the most consistently expressed genes among meningioma and non-pathological meningeal tissue across a range of experimental settings.


Subject(s)
Gene Expression Regulation, Neoplastic , Meningioma/genetics , Algorithms , Genetic Association Studies , Humans , RNA, Neoplasm/metabolism , Reference Standards , Reproducibility of Results
5.
Mol Carcinog ; 56(8): 1953-1964, 2017 08.
Article in English | MEDLINE | ID: mdl-28345785

ABSTRACT

NANOG, as a key regulator of pluripotency and acting synergistically with other factors, has been described as a crucial transcription factor in various types of cancer. In meningiomas the expression of this marker has not yet been described. With our study, we aimed to identify and localize NANOG and other possible markers of pluripotency, stem cell properties and differentiation in meningioma tissue, to elucidate a possible effect on tumorigenesis. The gene expression levels of NANOG (NANOG1 and NANOGP8), SOX2, OCT4, KLF4, ABCG2, CMYC, MSI1, CD44, NOTCH1, NES, SALL4B, TP53, and EPAS1 were quantitatively examined using RT-qPCR in 33 surgical specimens of low- (WHO grade I) as well as in high-grade (WHO grade II/III) meningiomas with dural tissue as reference. Immunofluorescence co-localization analysis following confocal fluorescence microscopy for NANOG, OCT4, SOX2, Nestin, KI-67, and CD44 was also performed. There was a significant overexpression of NANOG, MSI1, and EPAS1 and a downregulation of NES in all examined tumors. Subgroup analysis (WHO grade I versus grade II/III) revealed differences in the expression of NANOG, CD44, and MSI1. We found 1% NANOG-positive (NANOG+) cells in low-grade and 2% in grade II/III meningiomas co-expressing the other mentioned markers in various compositions. In particular, NANOG+ cells expressing SOX2 and OCT4 were successfully identified (26% low-grade versus 20% high-grade). Our data reveal an overexpression of NANOG and other markers of pluripotency and stemness in meningiomas. Such potentially pluripotent "stem cell-like" cells may have an impact on tumorigenesis and progression in human meningiomas.


Subject(s)
Gene Expression Regulation, Neoplastic , Meningeal Neoplasms/genetics , Meningioma/genetics , Nanog Homeobox Protein/genetics , Neoplastic Stem Cells/pathology , Up-Regulation , Antigens, Differentiation/analysis , Antigens, Differentiation/genetics , Humans , Kruppel-Like Factor 4 , Meningeal Neoplasms/pathology , Meningioma/pathology , Nanog Homeobox Protein/analysis , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism
6.
J Neurooncol ; 123(1): 35-42, 2015 May.
Article in English | MEDLINE | ID: mdl-25862007

ABSTRACT

In human glioma research, quantitative real-time reverse-transcription PCR is a frequently used tool. Considering the broad variation in the expression of candidate reference genes among tumor stages and normal brain, studies using quantitative RT-PCR require strict definition of adequate endogenous controls. This study aimed at testing a panel of nine reference genes [beta-2-microglobulin, cytochrome c-1 (CYC1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase, hypoxanthine guanine phosphoribosyl transferase 1, ribosomal protein L13a (RPL13A), succinate dehydrogenase, TATA-box binding protein and 14-3-3 protein zeta] to identify and validate the most suitable reference genes for expression studies in human glioma of different grades (World Health Organization grades II-IV). After analysis of the stability values calculated using geNorm, NormFinder, and BestKeeper algorithms, GAPDH, RPL13A, and CYC1 can be indicated as reference genes applicable for accurate normalization of gene expression in glioma compared with normal brain and anaplastic astrocytoma or glioblastoma alone within this experimental setting. Generally, there are no differences in expression levels and variability of candidate genes in glioma tissue compared to normal brain. But stability analyses revealed just a small number of genes suitable for normalization in each of the tumor subgroups and across these groups. Nevertheless, our data show the importance of validation of adequate reference genes prior to every study.


Subject(s)
Brain/metabolism , Gene Expression Profiling , Glioma/genetics , Neoplasm Proteins/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/standards , Glioma/pathology , Humans , Neoplasm Grading , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction
7.
J Neurooncol ; 118(2): 277-287, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24789255

ABSTRACT

Fatty acid synthase (FASN), catalyzing the de novo synthesis of fatty acids, is known to be deregulated in several cancers. Inhibition of this enzyme reduces tumor cell proliferation. Unfortunately, adverse effects and chemical instability prevent the in vivo use of the best-known inhibitors, Cerulenin and C75. Orlistat, a drug used for obesity treatment, is also considered as a potential FASN inhibitor, but its impact on glioma cell biology has not yet been described. In this study, we analyzed FASN expression in human glioma samples and primary glioblastoma cell cultures and the effects of FASN inhibition with Orlistat, Cerulenin and C75. Immunohistochemistry followed by densitometric analysis of 20 glioma samples revealed overexpression of FASN that correlated with the WHO tumor grade. Treatment of glioblastoma cells with these inhibitors resulted in a significant, dose-dependent reduction in tumor cell viability and fatty acid synthesis. Compared to Cerulenin and C75, Orlistat was a more potent inhibitor in cell cultures and cell lines. In LN229, cell-growth was reduced by 63.9 ± 8.7 % after 48 h and 200 µM Orlistat compared to controls; in LT68, the reduction in cell growth was 76.3 ± 23.7 %. Nuclear fragmentation assay and Western blotting analysis after targeting FASN with Orlistat demonstrated autophagy and apoptosis. Organotypic slice cultures treated with Orlistat showed reduced proliferation after Ki67 staining and increased caspase-3 cleavage. Our results suggest that FASN may be a therapeutic target in malignant gliomas and identify Orlistat as a possible anti-tumor drug in this setting.


Subject(s)
Apoptosis/physiology , Brain Neoplasms/enzymology , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthesis Inhibitors/pharmacology , Glioma/enzymology , Lactones/pharmacology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Autophagy/physiology , Brain/drug effects , Brain/enzymology , Brain/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Cerulenin/pharmacology , Dose-Response Relationship, Drug , Fatty Acid Synthase, Type I/antagonists & inhibitors , Glioblastoma/enzymology , Glioblastoma/pathology , Glioma/drug therapy , Glioma/pathology , Humans , Neoplasm Grading , Orlistat , Tissue Culture Techniques
8.
Development ; 134(6): 1171-80, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17301086

ABSTRACT

Recruitment of multipotent mesodermal cells to the myogenic lineage is mediated by the transcription factor Myf5, the first of the myogenic regulatory factors to be expressed in most sites of myogenesis in the mouse embryo. Among numerous elements controlling the spatiotemporal pattern of Myf5 expression, the -58/-56 kb distal Myf5 enhancer directs expression in myogenic progenitor cells in limbs and in somites. Here, we show by site-directed mutagenesis within this enhancer that a predicted homeobox adjacent to a putative paired domain-binding site is required for the activity in muscle precursor cells in limbs and strongly contributes to expression in somites. By contrast, predicted binding sites for Tcf/Lef, Mef3 and Smad transcription factors play no apparent role for the expression in limbs but might participate in the control in somites. A 30mer oligonucleotide sequence containing and surrounding the homeo and paired domain-binding motifs directs faithful expression in myogenic cells in limbs and also enhances myotomal expression in somites. Pax3 and Meox2 transcription factors can bind to these consensus sites in vitro and therefore constitute potential regulators. However, genetic evidence in the Meox2-deficient mouse mutant argues against a role for Meox2 in the regulation of Myf5 expression. The data presented here demonstrate that a composite homeo and paired domain-binding motif within the -58/-56 enhancer is required and sufficient for activation of the Myf5 gene in muscle progenitor cells in the limb. Although Pax3 constitutes a potential cognate transcription factor for the enhancer, it fails to transactivate the site in transfection experiments.


Subject(s)
Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Muscle Development/genetics , Muscle, Skeletal/embryology , Myoblasts, Skeletal/metabolism , Myogenic Regulatory Factor 5/genetics , Animals , Base Sequence , Binding Sites , Extremities/embryology , Homeodomain Proteins/metabolism , Mice , Mice, Transgenic , Molecular Sequence Data , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Oligonucleotides/chemistry , PAX3 Transcription Factor , Paired Box Transcription Factors/metabolism , Promoter Regions, Genetic , Protein Structure, Tertiary , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...