Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Psychopharmacol ; 35(6): 730-743, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34008450

ABSTRACT

BACKGROUND: Cognitive deficits profoundly impact on the quality of life of patients with schizophrenia. Alterations in brain derived neurotrophic factor (BDNF) signalling, which regulates synaptic function through the activation of full-length tropomyosin-related kinase B receptors (TrkB-FL), are implicated in the aetiology of schizophrenia, as is N-methyl-D-aspartate receptor (NMDA-R) hypofunction. However, whether NMDA-R hypofunction contributes to the disrupted BDNF signalling seen in patients remains unknown. AIMS: The purpose of this study was to characterise BDNF signalling and function in a preclinical rodent model relevant to schizophrenia induced by prolonged NMDA-R hypofunction. METHODS: Using the subchronic phencyclidine (PCP) model, we performed electrophysiology approaches, molecular characterisation and behavioural analysis. RESULTS: The data showed that prolonged NMDA-R antagonism, induced by subchronic PCP treatment, impairs long-term potentiation (LTP) and the facilitatory effect of BDNF upon LTP in the medial prefrontal cortex (PFC) of adult mice. Additionally, TrkB-FL receptor expression is decreased in the PFC of these animals. By contrast, these changes were not present in the hippocampus of PCP-treated mice. Moreover, BDNF levels were not altered in the hippocampus or PFC of PCP-treated mice. Interestingly, these observations are paralleled by impaired performance in PFC-dependent cognitive tests in mice treated with PCP. CONCLUSIONS: Overall, these data suggest that NMDA-R hypofunction induces dysfunctional BDNF signalling in the PFC, but not in the hippocampus, which may contribute to the PFC-dependent cognitive deficits seen in the subchronic PCP model. Additionally, these data suggest that targeting BDNF signalling may be a mechanism to improve PFC-dependent cognitive dysfunction in schizophrenia.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cognition Disorders/physiopathology , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/physiopathology , Animals , Cognition/physiology , Disease Models, Animal , Hippocampus/pathology , Male , Mice , Mice, Inbred C57BL , Neuropsychological Tests , Phencyclidine , Prefrontal Cortex/pathology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...