Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338793

ABSTRACT

Hypothyroidism compromises the testicular redox status and is associated with reduced sperm quality and infertility in men. In this regard, studies have demonstrated the antioxidant potential of kisspeptin in reproductive and metabolic diseases. In this study, we evaluate the effects of kisspeptin-10 (Kp10) on the testicular redox, as well as mediators of the unfolded protein response (UPR) in adult rats with hypothyroidism. Adult male Wistar rats were randomly separated into the Control (n = 15), Hypo (n = 13) and Hypo + Kp10 (n = 14) groups, and hypothyroidism was induced with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals received Kp10. Testis samples were collected for enzymatic, immunohistochemical and/or gene evaluation of mediators of oxidative stress (TBARs, lipid hydroperoxides (LOOH), ROS, peroxynitrite, SOD, CAT and GPX), endoplasmic reticulum stress (GRP78, ATF6, PERK, CHOP, HO-1 and sXBP1) and antiapoptocytes (BCL-2). Hypothyroidism increased apoptosis index, TBARS and LOOH concentrations, and reduced testicular gene expression of Sod1, Sod2 and Gpx1, as well as the expression of Grp78, Atf6, Ho1 and Chop. Treatment with Kp10, in turn, reduced testicular apoptosis and the production of peroxynitrite, while increased SOD1 and GPX ½ expression, and enzymatic activity of CAT, but did not affect the lower expression of UPR mediators caused by hypothyroidism. This study demonstrated that hypothyroidism causes oxidative stress and dysregulated the UPR pathway in rat testes and that, although Kp10 does not influence the low expression of UPR mediators, it improves the testicular redox status, configuring it as an important antioxidant factor in situations of thyroid dysfunction.


Subject(s)
Antioxidants , Hypothyroidism , Humans , Rats , Male , Animals , Antioxidants/metabolism , Testis/metabolism , Kisspeptins/metabolism , Rats, Wistar , Superoxide Dismutase-1/genetics , Endoplasmic Reticulum Chaperone BiP , Peroxynitrous Acid/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Semen/metabolism , Oxidation-Reduction , Hypothyroidism/drug therapy , Hypothyroidism/metabolism , Oxidative Stress , Unfolded Protein Response
2.
J Fungi (Basel) ; 9(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37888224

ABSTRACT

Cryptococcosis is a systemic mycosis that causes pneumonia and meningoencephalitis. Strongyloidiasis is a chronic gastrointestinal infection caused by parasites of the genus Strongyloides. Cryptococcosis and strongyloidiasis affect the lungs and are more prevalent in the same world regions, i.e., Africa and tropical countries such as Brazil. It is undeniable that those coincidences may lead to the occurrence of coinfections. However, there are no studies focused on the interaction between Cryptococcus spp. and Strongyloides spp. In this work, we aimed to investigate the interaction between Strongyloides venezuelensis (Sv) and Cryptococcus gattii (Cg) in a murine coinfection model. Murine macrophage exposure to Sv antigens reduced their ability to engulf Cg and produce reactive oxygen species, increasing the ability of fungal growth intracellularly. We then infected mice with both pathogens. Sv infection skewed the host's response to fungal infection, increasing lethality in a murine coinfection model. In addition to increased NO levels and arginase activity, coinfected mice presented a classic Th2 anti-Sv response: eosinophilia, higher levels of alternate activated macrophages (M2), increased concentrations of CCL24 and IL-4, and lower levels of IL-1ß. This milieu favored fungal growth in the lungs with prominent translocation to the brain, increasing the host's tissue damage. In conclusion, our data shows that primary Sv infection promotes Th2 bias of the pulmonary response to Cg-infection and worsens its pathological outcomes.

3.
Reprod Fertil Dev ; 35(10): 539-551, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37257504

ABSTRACT

CONTEXT: Proliferation, differentiation, migration and apoptosis of trophoblastic cells are influenced by hypoxia, as well as adequate modulation of oxidative stress and the unfolded protein response (UPR) pathway. AIMS: We aimed to evaluate the expression profile of redox and UPR mediators in the placenta of rats throughout pregnancy. METHODS: Placental expression of hypoxia-inducible factor 1α (HIF1α), 8-Hydroxy-2'-deoxyguanosine (8-OHdG), superoxide dismutase 1 (SOD1), glutathione peroxidase (GPX), catalase (Cat), activating transcription factor 6 (ATF6), protein kinase RNA-like endoplasmic reticulum kinase (PERK), 78 kD glucose-regulated protein (GRP78) and C/EBP-homologous protein (CHOP), as well as reactive oxygen species (ROS) and peroxynitrite production, were evaluated in Wistar rats on the 10th, 12th, 14th, 16th and 18th day of pregnancy (DP). KEY RESULTS: Increased immunostaining of HIF1α was observed on the 16th and 18th DP, while 8-OHdG and ROS production were greater on the 14th DP. SOD1 and Cat had increased immunostaining on the 14th and 18th DP, while staining of GPX1/2, GRP78 and CHOP was greater on the 18th DP. With regard to gene expression, Hif1α and Sod1 showed increased mRNA expression on the 12th and 16th DP, while Gpx1 had increased expression on the 10th and 16th DP. Cat , Perk and Grp78 gene expression was greater on the 14th DP, unlike Atf6 , which showed greater expression on the 12th DP. In contrast, Chop maintained increased expression from the 12th to the 18th DP. CONCLUSIONS: The placental expression of redox and UPR mediators in rats is influenced by gestational age, with greater expression in periods of greater HIF1α and 8-OHdG expression and at the end of the pregnancy. IMPLICATIONS: This study provides data on the physiological modulation of redox and UPR mediators during placental development in rats.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Rats , Female , Pregnancy , Animals , Reactive Oxygen Species/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Placenta/metabolism , Heat-Shock Proteins/metabolism , Rats, Wistar , Unfolded Protein Response , Apoptosis , Oxidation-Reduction , Hypoxia/metabolism
4.
Microbes Infect ; 25(6): 105122, 2023.
Article in English | MEDLINE | ID: mdl-36842669

ABSTRACT

Prior infections can provide protection or enhance susceptibility to a subsequent infection through microorganism's interaction or host immunomodulation. Staphylococcus aureus (SA) and Cryptococcus gattii (CG) cause lungs infection, but it is unclear how they interact in vivo. This study aimed to study the effects of the primary SA lung infection on secondary cryptococcosis caused by CG in a murine model. The mice's survival, fungal burden, behavior, immune cells, cytokines, and chemokines were quantified to evaluate murine cryptococcosis under the influence of a previous SA infection. Further, fungal-bacterial in vitro interaction was studied in a culture medium and a phagocytosis assay. The primary infection with SA protects animals from the subsequent CG infection by reducing lethality, improving behavior, and impairing the fungal proliferation within the host. This phenotype was associated with the proinflammatory antifungal host response elicited by the bacteria in the early stage of cryptococcosis. There was no direct inhibition of CG by SA, although the phagocytic activity of macrophages was reduced. Identifying mechanisms involved in this protection may lead to new approaches for preventing and treating cryptococcosis.


Subject(s)
Cryptococcosis , Cryptococcus gattii , Cryptococcus neoformans , Animals , Mice , Cryptococcus neoformans/genetics , Staphylococcus aureus , Disease Models, Animal , Cryptococcosis/microbiology , Cryptococcosis/prevention & control , Cryptococcus gattii/physiology
5.
Pathogens ; 11(12)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36558850

ABSTRACT

Sporotrichosis is a fungal disease that causes symptoms similar to those of other infectious and non-infectious diseases, making diagnosis difficult and challenging. Here, we report a case of an HIV-negative patient presenting disseminated sporotrichosis with widespread cutaneous lesions mimicking pyoderma gangrenosum, with bone marrow infection, pancytopenia, and hemophagocytic syndrome. However, all the clinical manifestations and a bacterial coinfection delayed the request for a fungal diagnosis. Therefore, sporotrichosis should always be investigated in patients from endemic areas presenting with widespread cutaneous lesions associated with pancytopenia.

6.
Referência ; serVI(1): e22026, dez. 2022. tab, graf
Article in Portuguese | LILACS-Express | BDENF - Nursing | ID: biblio-1431186

ABSTRACT

Resumo Enquadramento: Óleos vegetais apresentam ação antimicrobiana e promovem a proliferação celular. O óleo de girassol é usado como alternativa para o tratamento de feridas cutâneas, especialmente nos países subdesenvolvidos ou em desenvolvimento. Objetivo: Caracterizar o óleo de girassol e avaliar os efeitos in vitro na proliferação celular e na atividade antimicrobiana. Metodologia: Análises por cromatografia a gás acoplada à espectrometria de massas, testes de proliferação celular e atividade antimicrobiana. Resultados: Na análise cromatográfica do óleo de girassol identificaram-se os compostos maioritários - ácidos gordos insaturados (82,2%) tendo como principais lípidos os ácidos linoleico (47,8%), oleico (28,7%) e linolênico (3,9%), seguidos pelos ácidos saturados (12,70%), palmítico (8,8%) e esteárico (3,6%). Houve diferença (p < 0,001) entre os tratamentos com óleo de girassol (100 e 10 µg/ml) e controlos negativos na proliferação celular. Ineficácia na atividade antimicrobiana frente às bactérias Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis e Klebsiella pneumoniae. Conclusão: A composição do óleo de girassol mostrou elevada concentração de ácidos gordos essenciais, promoveu proliferação celular, mas não inibiu atividade bacteriana.


Abstract Background: Vegetable oils have antimicrobial activity and promote cell proliferation. Sunflower oil is used as an alternative for treating skin wounds, particularly in underdeveloped or developing countries. Objective: To characterize sunflower oil and evaluate the in vitro effects on cell proliferation and antimicrobial activity. Methodology: The study was carried out using gas chromatography-mass spectrometry (GC-MS) analysis and cell proliferation and antimicrobial activity tests. Results: The chromatographic analysis identified the main components of sunflower oil, namely: unsaturated fatty acids (82.2%) with linoleic (47.8%), oleic (28.7%), and linolenic (3.9%) acids as the main lipids, followed by saturated (12.70%), palmitic (8.8%) and stearic (3.6%) acids. A difference (p < 0.001) in cell proliferation was found between treatments with sunflower oil (100 and 10 µg/ml) and the negative controls. It failed in antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, and Klebsiella pneumoniae. Conclusion: Sunflower oil contains a high concentration of essential fatty acids and promotes cell proliferation but fails to inhibit bacterial activity.


Resumen Marco contextual: Los aceites vegetales tienen acción antimicrobiana y promueven la proliferación celular. El aceite de girasol se utiliza como alternativa para tratar las heridas cutáneas, especialmente en los países subdesarrollados o en vías de desarrollo. Objetivo: Caracterizar el aceite de girasol y evaluar los efectos in vitro sobre la proliferación celular y la actividad antimicrobiana. Metodología: Análisis por cromatografía de gases acoplado a espectrometría de masas, pruebas de proliferación celular y actividad antimicrobiana. Resultados: En el análisis cromatográfico del aceite de girasol, se identificaron los compuestos mayoritarios - ácidos grasos insaturados (82,2%), los principales lípidos son el ácido linoleico (47,8%), oleico (28,7%) y linolénico (3,9%), seguidos del ácido saturado (12,70%), palmítico (8,8%) y esteárico (3,6%). Hubo una diferencia (p < 0,001) entre los tratamientos con aceite de girasol (100 y 10 µg/ml) y los controles negativos en la proliferación celular. Actividad antimicrobiana ineficaz contra las bacterias Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis e Klebsiella pneumoniae. Conclusión: La composición del aceite de girasol mostró una alta concentración de ácidos grasos esenciales, promovió la proliferación celular, pero no inhibió la actividad bacteriana.

7.
Free Radic Biol Med ; 191: 24-39, 2022 10.
Article in English | MEDLINE | ID: mdl-36038036

ABSTRACT

Maternal hypothyroidism is associated with pre-eclampsia and intrauterine growth restriction, gestational diseases involving oxidative stress (OS) and endoplasmic reticulum stress (ERS) in the placenta. However, it is not known whether hypothyroidism also causes OS and ERS at the maternal-fetal interface. The aim was to evaluate the fetal-placental development and the expression of mediators of OS and of the unfolded protein response (UPR) in the maternal-fetal interface of hypothyroid rats. Hypothyroidism was induced in Wistar rats with propylthiouracil and the fetal-placental development and placental and decidual expression of antioxidant, hypoxia, and UPR mediators were analyzed at 14 and 18 days of gestation (DG), as well the expression of 8-OHdG and MDA, and reactive oxygen species (ROS) and peroxynitrite levels. Hypothyroidism reduced fetal weight at 14 and 18 DG, in addition to increasing the percentage of fetal death and reducing the weight of the uteroplacental unit at 18 DG. At 14 DG, there was greater decidual and/or placental immunostaining of Hif1α, 8-OHdG, MDA, SOD1, GPx1/2, Grp78 and CHOP in hypothyroid rats, while there was a reduction in placental and/or decidual gene expression of Sod1, Gpx1, Atf6, Perk, Ho1, Xbp1, Grp78 and Chop in the same gestational period. At 18 DG, hypothyroidism increased the placental ROS levels and the decidual and/or placental immunostaining of HIF1α, 8-OHdG, MDA, ATF4, GRP78 and CHOP, while it reduced the immunostaining and enzymatic activity of SOD1, CAT, GST. Hypothyroidism increased the placental mRNA expression of Hifα, Nrf2, Sod2, Gpx1, Cat, Perk, Atf6 and Chop at 18 DG, while decreasing the decidual expression of Sod2, Cat and Atf6. These findings demonstrated that fetal-placental restriction in female rats with hypothyroidism is associated with hypoxia and dysregulation in placental and decidual expression of UPR mediators and antioxidant enzymes, and activation of oxidative stress and endoplasmic reticulum stress at the maternal-fetal interface.


Subject(s)
Endoplasmic Reticulum Stress , Hypothyroidism , Animals , Antioxidants/metabolism , Endoplasmic Reticulum Stress/genetics , Female , Humans , Hypothyroidism/genetics , Hypothyroidism/metabolism , Hypoxia/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Peroxynitrous Acid/metabolism , Placenta/metabolism , Pregnancy , Propylthiouracil/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
8.
Contemp Clin Trials Commun ; 22: 100745, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33997457

ABSTRACT

BACKGROUND: Cryptococcosis affects more than 220,000 patients/year, with high mortality even when the standard treatment [amphotericin B (AMB), 5-flucytosin (5-FC) and fluconazole] is used. AMB presents high toxicity and 5-FC is not currently available in Brazil. In a pre-clinical study, pioglitazone (PIO - an antidiabetic drug) decreased AMB toxicity and lead to an increased mice survival, reduced morbidity and fungal burden in brain and lungs. The aim of this trial is to evaluate the efficacy and safety of PIO combined with standard antifungal treatment for human cryptococcosis. METHODS: A phase 1/2, randomized, double blind, placebo-controlled trial will be performed with patients from Belo Horizonte, Brazil. They will be divided into three groups (placebo, PIO 15 mg/day or PIO 45 mg/day) and will receive an additional pill during the induction phase of cryptococcosis' treatment. Our hypothesis is that treated patients will have increased survival, so the primary outcome will be the mortality rate. Patients will be monitored for survival, side effects, fungal burden and inflammatory mediators in blood and cerebrospinal fluid. The follow up will occur for up 60 days. CONCLUSIONS: We expect that PIO will be an adequate adjuvant to the standard cryptococcosis' treatment. TRIAL REGISTRATION: ICTRP/WHO (and International Clinical Trial Registry Plataform (ICTRP/WHO) (http://apps.who.int/trialsearch/Trial2.aspx?TrialID=RBR-9fv3f4), RBR-9fv3f4 (http://www.ensaiosclinicos.gov.br/rg/RBR-9fv3f4). UTN Number: U1111-1226-1535. Ethical approvement number: CAAE 17377019.0.0000.5149.

9.
Med Mycol ; 58(6): 835-844, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-31919505

ABSTRACT

Cryptococcosis is a life-threatening fungal infection, and its current treatment is toxic and subject to resistance. Drug repurposing represents an interesting approach to find drugs to reduce the toxicity of antifungals. In this study, we evaluated the combination of N-acetylcysteine (NAC) with amphotericin B (AMB) for the treatment of cryptococcosis. We examined the effects of NAC on fungal morphophysiology and on the macrophage fungicidal activity 3 and 24 hours post inoculation. The therapeutic effects of NAC combination with AMB were investigated in a murine model with daily treatments regimens. NAC alone reduced the oxidative burst generated by AMB in yeast cells, but did not inhibit fungal growth. The combination NAC + AMB decreased capsule size, zeta potential, superoxide dismutase activity and lipid peroxidation. In macrophage assays, NAC + AMB did not influence the phagocytosis, but induced fungal killing with different levels of oxidative bursts when compared to AMB alone: there was an increased reactive oxygen species (ROS) after 3 hours and reduced levels after 24 hours. By contrast, ROS remained elevated when AMB was tested alone, demonstrating that NAC reduced AMB oxidative effects without influencing its antifungal activity. Uninfected mice treated with NAC + AMB had lower concentrations of serum creatinine and glutamate-pyruvate transaminase in comparison to AMB. The combination of NAC + AMB was far better than AMB alone in increasing survival and reducing morbidity in murine-induced cryptococcosis, leading to reduced fungal burden in lungs and brain and also lower concentrations of pro-inflammatory cytokines in the lungs. In conclusion, NAC + AMB may represent an alternative adjuvant for the treatment of cryptococcosis.


Subject(s)
Acetylcysteine/therapeutic use , Amphotericin B/toxicity , Antifungal Agents/therapeutic use , Cryptococcosis/drug therapy , Deoxycholic Acid/toxicity , Kidney/drug effects , Amphotericin B/pharmacology , Amphotericin B/therapeutic use , Animals , Antifungal Agents/pharmacology , Antifungal Agents/toxicity , Brain/drug effects , Brain/microbiology , Creatinine/blood , Cryptococcosis/microbiology , Cryptococcus/drug effects , Deoxycholic Acid/pharmacology , Deoxycholic Acid/therapeutic use , Disease Models, Animal , Drug Combinations , Drug Repositioning , Female , Kidney/microbiology , Lung/drug effects , Lung/microbiology , Macrophages/drug effects , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Reactive Oxygen Species
10.
Sci Total Environ ; 681: 516-523, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31121401

ABSTRACT

Agrochemicals such as the non-azoles, used to improve crop productivity, poses severe undesirable effects on the environment and human health. In addition, they induce cross-resistance (CR) with clinical drugs in pathogenic fungi. However, till date emphasis has been given to the role of azoles on the induction of CR. Herein, we analyzed the effect of a non-azole agrochemical, pyraclostrobin (PCT), on the antifungal susceptibility and virulence of the human and animal pathogens Cryptococcus gattii and C. neoformans. We determined the minimum inhibitory concentration (MIC) of fluconazole (FLC), itraconazole, ravuconazole, amphotericin B, and PCT on colonies: (i) that were not exposed to PCT (non-adapted-NA-cultures), (ii) were exposed at the maximum concentration of PCT (adapted-A-cultures) and (iii) the adapted colonies after cultivation 10 times in PCT-free media (10 passages-10p-cultures). Our results showed that exposure to PCT induced both temporary and permanent CR to clinical azoles in a temperature-dependent manner. With the objective to understand the mechanism of induction of CR through non-azoles, the transcriptomes of NA and 10p cells from C. gattii R265 were analyzed. The transcriptomic analysis showed that expression of the efflux-pump genes (AFR1 and MDR1) and PCT target was higher in resistant 10p cells than that in NA. Moreover, the virulence of 10p cells was reduced as compared to NA cells in mice, as observed by the differential gene expression analysis of genes related to ion-metabolism. Additionally, we observed that FLC could not increase the survival rate of mice infected with 10p cells, confirming the occurrence of permanent CR in vivo. The findings of the present study demonstrate that the non-azole agrochemical PCT can induce permanent CR to clinical antifungals through increased expression of efflux pump genes in resistant cells and that such phenomenon also manifests in vivo.


Subject(s)
Agrochemicals , Antifungal Agents , Cryptococcus gattii/physiology , Drug Resistance, Fungal/physiology , Strobilurins/toxicity , Animals , Cryptococcus neoformans , Humans , Mice , Microbial Sensitivity Tests
11.
Front Microbiol ; 10: 3114, 2019.
Article in English | MEDLINE | ID: mdl-32117083

ABSTRACT

Cryptococcus species are responsible for important systemic mycosis and are estimated to cause millions of new cases annually. The available therapy is limited due to the high toxicity and the increasing rates of yeast resistance to antifungal drugs. Popularly known as "sucará," Xylosma prockia (Turcz.) Turcz. (Salicaceae) is a native plant from Brazil with little information on its pharmacological potential. In this work, we evaluated in vitro anticryptococcal effects of the leaf ethanolic extract of X. prockia and its fractions against Cryptococcus gattii and Cryptococcus neoformans. We also evaluated phenotypic alterations caused by ethyl acetate fraction (EAF) (chosen according to its biological results). The liquid chromatography-mass spectrometry (LC-MS) analysis of EAF demonstrated the presence of phenolic metabolites that belong to three structurally related groups as majority compounds: caffeoylquinic acid, coumaroyl-glucoside, and caffeoyl-glucoside/deoxyhexosyl-caffeoyl glucoside derivatives. The minimum inhibitory concentration (MIC) values against C. gattii and C. neoformans ranged from 8 to 64 mg/L and from 0.5 to 8 mg/L, for ethanolic extract and EAF, respectively. The EAF triggered an oxidative burst and promoted lipid peroxidation. EAF also induced a reduction of ergosterol content in the pathogen cell membrane. These effects were not associated with alterations in the cell surface charge or in the thermodynamic fingerprint of the molecular interaction between EAF and the yeasts evaluated. Cytotoxic experiments with peripheral blood mononuclear cells (PBMCs) demonstrated that EAF was more selective for yeasts than was PBMCs. The results may provide evidence that X. prockia leaf extract might indeed be a potential source of antifungal agents.

12.
J Adv Res ; 14: 81-91, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30009053

ABSTRACT

The incidence of fungal infections is considered a serious public health problem worldwide. The limited number of antimycotic drugs available to treat human and animal mycosis, the undesirable side effects and toxicities of the currently available drugs, and the emergence of fungal resistance emphasizes the urgent need for more effective antimycotic medicines. In this paper, we describe a rapid, simple, and efficient synthetic route for preparation of the antifungal agent butenafine on a multigram scale. This novel synthetic route also facilitated the preparation of 17 butenafine analogues using Schiff bases as precursors in three steps or less. All the synthesized compounds were evaluated against the yeast, Cryptococcus neoformans/C. gattii species complexes and the filamentous fungi Trichophyton rubrum and Microsporum gypseum. Amine 4bd, a demethylated analogue of butenafine, and its corresponding hydrochloride salt showed low toxicity in vitro and in vivo while maintaining inhibitory activity against filamentous fungi.

13.
Article in English | MEDLINE | ID: mdl-29109169

ABSTRACT

Cryptococcus gattii and Cryptococcus neoformans are environmental fungi that cause cryptococcosis, which is usually treated with amphotericin B and fluconazole. However, therapeutic failure is increasing because of the emergence of resistant strains. Because these species are constantly isolated from vegetal materials and the usage of agrochemicals is growing, we postulate that pesticides could be responsible for the altered susceptibility of these fungi to clinical drugs. Therefore, we evaluated the influence of the pesticide tebuconazole on the susceptibility to clinical drugs, morphophysiology, and virulence of C. gattii and C. neoformans strains. The results showed that tebuconazole exposure caused in vitro cross-resistance (CR) between the agrochemical and clinical azoles (fluconazole, itraconazole, and ravuconazole) but not with amphotericin B. In some strains, CR was observed even after the exposure ceased. Further, tebuconazole exposure changed the morphology, including formation of pseudohyphae in C. neoformans H99, and the surface charge of the cells. Although the virulence of both species previously exposed to tebuconazole was decreased in mice, the tebuconazole-exposed colonies recovered from the lungs were more resistant to azole drugs than the nonexposed cells. This in vivo CR was confirmed when fluconazole was not able to reduce the fungal burden in the lungs of mice. The tolerance to azoles could be due to increased expression of the ERG11 gene in both species and of efflux pump genes (AFR1 and MDR1) in C. neoformans Our study data support the idea that agrochemical usage can significantly affect human pathogens present in the environment by affecting their resistance to clinical drugs.


Subject(s)
Cryptococcus gattii/drug effects , Cryptococcus neoformans/drug effects , Drug Resistance, Multiple, Fungal/drug effects , Fungicides, Industrial/pharmacology , Triazoles/pharmacology , Animals , Antifungal Agents/pharmacology , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Cryptococcus gattii/pathogenicity , Cryptococcus gattii/physiology , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/physiology , Fluconazole/pharmacology , Male , Mice, Inbred C57BL , Microbial Sensitivity Tests , Virulence/drug effects
14.
Eur J Pharm Sci ; 92: 235-43, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27235581

ABSTRACT

The emergence of fluconazole-resistant Cryptococcus gattii is a global concern, since this azole is the main antifungal used worldwide to treat patients with cryptococcosis. Although pharmacokinetic (PK) and pharmacodynamic (PD) indices are useful predictive factors for therapeutic outcomes, there is a scarcity of data regarding PK/PD analysis of antifungals in cryptococcosis caused by resistant strains. In this study, PK/PD parameters were determined in a murine model of cryptococcosis caused by resistant C. gattii. We developed and validated a suitable liquid chromatography-electrospray ionization tandem mass spectrometry method for PK studies of fluconazole in the serum, lungs, and brain of uninfected mice. Mice were infected with susceptible or resistant C. gattii, and the effects of different doses of fluconazole on the pulmonary and central nervous system fungal burden were determined. The peak levels in the serum, lungs, and brain were achieved within 0.5h. The AUC/MIC index (area under the curve/minimum inhibitory concentration) was associated with the outcome of anti-cryptococcal therapy. Interestingly, the maximum concentration of fluconazole in the brain was lower than the MIC for both strains. In addition, the treatment of mice infected with the resistant strain was ineffective even when high doses of fluconazole were used or when amphotericin B was tested, confirming the cross-resistance between these drugs. Altogether, our novel data provide the correlation of PK/PD parameters with antifungal therapy during cryptococcosis caused by resistant C. gattii.


Subject(s)
Antifungal Agents , Cryptococcosis , Cryptococcus gattii , Drug Resistance, Fungal , Fluconazole , Amphotericin B/therapeutic use , Animals , Antifungal Agents/blood , Antifungal Agents/pharmacokinetics , Antifungal Agents/therapeutic use , Brain/metabolism , Brain/microbiology , Chromatography, Liquid , Colony Count, Microbial , Cryptococcosis/drug therapy , Cryptococcosis/metabolism , Cryptococcosis/microbiology , Cryptococcus gattii/drug effects , Cryptococcus gattii/growth & development , Cryptococcus gattii/isolation & purification , Disease Models, Animal , Fluconazole/blood , Fluconazole/pharmacokinetics , Fluconazole/therapeutic use , Lung/metabolism , Lung/microbiology , Male , Mice, Inbred C57BL , Microbial Sensitivity Tests , Models, Biological , Spectrometry, Mass, Electrospray Ionization
15.
Int J Med Microbiol ; 306(4): 187-95, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27083265

ABSTRACT

The inflammatory response plays a crucial role in infectious diseases, and the intestinal microbiota is linked to maturation of the immune system. However, the association between microbiota and the response against fungal infections has not been elucidated. Our aim was to evaluate the influence of microbiota on Cryptococcus gattii infection. Germ-free (GF), conventional (CV), conventionalized (CVN-mice that received feces from conventional animals), and LPS-stimulated mice were infected with C. gattii. GF mice were more susceptible to infection, showing lower survival, higher fungal burden in the lungs and brain, increased behavioral changes, reduced levels of IFN-γ, IL-1ß and IL-17, and lower NFκBp65 phosphorylation compared to CV mice. Low expression of inflammatory cytokines was associated with smaller yeast cells and polysaccharide capsules (the main virulence factor of C. gattii) in the lungs, and less tissue damage. Furthermore, macrophages from GF mice showed reduced ability to engulf, produce ROS, and kill C. gattii. Restoration of microbiota (CVN mice) or LPS administration made GF mice more responsive to infection, which was associated with increased survival and higher levels of inflammatory mediators. This study is the first to demonstrate the influence of microbiota in the host response against C. gattii.


Subject(s)
Cryptococcosis/immunology , Cryptococcosis/pathology , Cryptococcus gattii/immunology , Disease Susceptibility , Gastrointestinal Microbiome/immunology , Inflammation/pathology , Animals , Apoptosis Regulatory Proteins , Brain/microbiology , Brain/pathology , Colony Count, Microbial , Cytokines/metabolism , Disease Models, Animal , Germ-Free Life , Lung/microbiology , Lung/pathology , Macrophages/immunology , Mice , Phagocytosis , Receptors, Immunologic , Receptors, Scavenger , Survival Analysis , Wiskott-Aldrich Syndrome Protein
16.
Antimicrob Agents Chemother ; 59(8): 4600-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26014951

ABSTRACT

Cryptococcus gattii is the main etiological agent of cryptococcosis in immunocompetent individuals. The triazole drug itraconazole is one of the antifungals used to treat patients with cryptococcosis. Heteroresistance is an adaptive mechanism to counteract the stress of increasing drug concentrations, and it can enhance the ability of a microorganism to survive under antifungal pressure. In this study, we evaluated the ability of 11 C. gattii strains to develop itraconazole heteroresistance. Heteroresistant clones were analyzed for drug susceptibility, alterations in cell diameter, capsule properties, and virulence in a murine model. Heteroresistance to itraconazole was intrinsic in all of the strains analyzed, reduced both the capsule size and the cell diameter, induced molecular heterogeneity at the chromosomal level, changed the negatively charged cells, reduced ergosterol content, and improved the antioxidant system. A positive correlation between surface/volume ratio of original cells and the level of heteroresistance to itraconazole (LHI) was observed in addition to a negative correlation between capsule size of heteroresistant clones and LHI. Moreover, heteroresistance to itraconazole increased the engulfment of C. gattii by macrophages and augmented fungal proliferation inside these cells, which probably accounted for the reduced survival of the mice infected with the heteroresistant clones and the higher fungal burden in lungs and brain. Our results indicate that heteroresistance to itraconazole is intrinsic and increases the virulence of C. gattii. This phenomenon may represent an additional mechanism that contributes to relapses of cryptococcosis in patients during itraconazole therapy.


Subject(s)
Antifungal Agents/therapeutic use , Cryptococcus gattii/drug effects , Drug Resistance, Fungal/drug effects , Itraconazole/pharmacology , Virulence/drug effects , Animals , Brain/microbiology , Cell Proliferation/drug effects , Cryptococcosis/drug therapy , Cryptococcosis/microbiology , Cryptococcus gattii/physiology , Drug Resistance, Fungal/physiology , Lung/microbiology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests/methods , Virulence/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...