Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Photonics ; 11(4): 1390-1395, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38645996

ABSTRACT

Temperature changes in plasmonic traps can affect biomolecules and quantum emitters; therefore, several works have sought out the capability of measuring the local temperature. Those works used ionic nanopore currents, fluorescence emission variations, and fluorescence-based diffusion tracking to measure the temperature dependence of shaped nanoapertures in metal films. Here, we make use of a stable erbium-containing NaYF4 nanocrystal that gives local temperature dependence while trapped in the nanoaperture hot spot. Ratiometric analysis of the emission at different wavelengths gives local temperature variation. Since the gold film dominates the thermal characteristic, we find that films of thickness 70, 100, and 130 nm give 0.64, 0.37, and 0.25 K/mW temperature change with laser power. Therefore, using thicker films can be effective in reducing the heating when it is not desired.

2.
ACS Appl Mater Interfaces ; 16(11): 13453-13465, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38445594

ABSTRACT

Ionizing radiation has become widely used in medicine, with application in diagnostic techniques, such as computed tomography (CT) and radiation therapy (RT), where X-rays are used to diagnose and treat tumors. The X-rays used in CT and, in particular, in RT can have harmful side effects; hence, an accurate determination of the delivered radiation dose is of utmost importance to minimize any damage to healthy tissues. For this, medical specialists mostly rely on theoretical predictions of the delivered dose or external measurements of the dose. To extend the practical use of ionizing radiation-based medical techniques, such as magnetic resonance imaging (MRI)-guided RT, a more precise measurement of the internal radiation dose internally is required. In this work, a novel approach is presented to measure dose in liquids for potential future in vivo applications. The strategy relies on MRI contrast agents (CAs) that provide a dose-sensitive signal. The demonstrated materials are (citrate-capped) CaF2 nanoparticles (NPs) doped with Eu3+ or Fe2+/Fe3+ ions. Free electrons generated by ionizing radiation allow the reduction of Eu3+, which produces a very small contrast in MRI, to Eu2+, which induces a strong contrast. Oxidative species generated by high-energy X-rays can be measured indirectly using Fe2+ because it oxidizes to Fe3+, increasing the contrast in MRI. Notably, in the results, a strong increase in the proton relaxation rates is observed for the Eu3+-doped NPs at 40 kV. At 6 MV, a significant increase in proton relaxation rates is observed using CaF2 NPs doped with Fe2+/Fe3+ after irradiation. The presented concept shows great promise for use in the clinic to measure in vivo local ionizing radiation dose, as these CAs can be intravenously injected in a saline solution.


Subject(s)
Contrast Media , Protons , X-Rays , Magnetic Resonance Imaging , Radiation Dosage
3.
J Chem Phys ; 154(18): 184204, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34241038

ABSTRACT

Single-photon sources are required for quantum technologies and can be created from individual atoms and atom-like defects. Erbium ions produce single photons at low-loss fiber optic wavelengths, but they have low emission rates, making them challenging to isolate reliably. Here, we tune the size of gold double nanoholes (DNHs) to enhance the emission of single erbium emitters, achieving 50× enhancement over rectangular apertures previously demonstrated. This produces enough enhancement to show emission from single nanocrystals at wavelengths not seen in our previous work, i.e., 400 and 1550 nm. We observe discrete levels of emission for nanocrystals with low numbers of emitters and demonstrate isolating single emitters. We describe how the trapping time is proportional to the enhancement factor for a given DNH structure, giving us an independent way to measure the enhancement. This shows a promising path to achieving single emitter sources at 1550 nm.

5.
J Med Imaging (Bellingham) ; 7(3): 033502, 2020 May.
Article in English | MEDLINE | ID: mdl-32566695

ABSTRACT

Purpose: We present photon-counting computed tomography (PCCT) imaging of contrast agent triplets similar in atomic number ( Z ) achieved with a high-flux cadmium zinc telluride (CZT) detector. Approach: The table-top PCCT imaging system included a 330 - µ m -pitch CZT detector of size 8 mm × 24 mm 2 capable of using six energy bins. Four 3D-printed 3-cm-diameter phantoms each contained seven 6-mm-diameter vials with water and low and high concentration solutions of various contrast agents. Lanthanum ( Z = 57 ), gadolinium (Gd) ( Z = 64 ), and lutetium ( Z = 71 ) were imaged together and so were iodine ( Z = 53 ), Gd, and holmium ( Z = 67 ). Each phantom was imaged with 1-mm aluminum-filtered 120-kVp cone beam x rays to produce six energy-binned computed tomography (CT) images. Results: K -edge images were reconstructed using a weighted sum of six CT images, which distinguished each contrast agent with a root-mean-square error (RMSE) of < 0.29 % and 0.51% for the 0.5% and 5% concentrations, respectively. Minimal cross-contamination in each K -edge image was seen, with RMSE values < 0.27 % in vials with no contrast. Conclusion: This is the first preliminary demonstration of simultaneously imaging three similar Z contrast agents with a difference in Z as low as 3.

6.
Nano Lett ; 20(2): 1018-1022, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31891509

ABSTRACT

Single-photon emitters based on individual atoms or individual atomic-like defects are highly sought-after components for future quantum technologies. A key challenge in this field is how to isolate just one such emitter; the best approaches still have an active emitter yield of only 50% so that deterministic integration of single active emitters is not yet possible. Here, we demonstrate the ability to isolate individual erbium emitters embedded in 20 nm nanocrystals of NaYF4 using plasmonic aperture optical tweezers. The optical tweezers capture the nanocrystal, whereas the plasmonic aperture enhances the emission of the Er and allows the measurement of discrete emission rate values corresponding to different numbers of erbium ions. Three separate synthesis runs show near-Poissonian distribution in the discrete levels of emission yield that correspond to the expected ion concentrations, indicating that the yield of active emitters is approximately 80%. Fortunately, the trap allows for selecting the nanocrystals with only a single emitter, and so this gives a route to isolating and integrating single emitters in a deterministic way. This demonstration is a promising step toward single-photon quantum information technologies that utilize single ions in a solid-state medium, particularly because Er emits in the low-loss fiber-optic 1550 nm telecom band.

SELECTION OF CITATIONS
SEARCH DETAIL
...