Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 150
Filter
Add more filters










Publication year range
1.
ACS Catal ; 14(9): 7157-7165, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38721382

ABSTRACT

With heterogeneous catalysts, chemical promotion takes place at their surfaces. Even in the case of single-atom alloys, where small quantities of a reactive metal are dispersed within the main host, it is assumed that both elements are exposed and available to bond with the reactants. Here, we show, on the basis of in situ X-ray absorption spectroscopy data, that in alloy catalysts made from Pt highly diluted in Cu the Pt atoms are located at the inner interface between the metal nanoparticles and the silica support instead. Kinetic experiments indicated that these catalysts still display better selectivity for the hydrogenation of unsaturated aldehydes to unsaturated alcohols than the pure metals. Density functional theory calculations corroborated the stability of Pt at the metal-support interface and explained the catalytic performance as being due to a remote lowering of the activation barrier for the dissociation of H2 at Cu sites by the internal Pt atoms.

2.
J Synchrotron Radiat ; 31(Pt 3): 456-463, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38592971

ABSTRACT

This study introduces a novel iterative Bragg peak removal with automatic intensity correction (IBR-AIC) methodology for X-ray absorption spectroscopy (XAS), specifically addressing the challenge of Bragg peak interference in the analysis of crystalline materials. The approach integrates experimental adjustments and sophisticated post-processing, including an iterative algorithm for robust calculation of the scaling factor of the absorption coefficients and efficient elimination of the Bragg peaks, a common obstacle in accurately interpreting XAS data, particularly in crystalline samples. The method was thoroughly evaluated on dilute catalysts and thin films, with fluorescence mode and large-angle rotation. The results underscore the technique's effectiveness, adaptability and substantial potential in improving the precision of XAS data analysis. While demonstrating significant promise, the method does have limitations related to signal-to-noise ratio sensitivity and the necessity for meticulous angle selection during experimentation. Overall, IBR-AIC represents a significant advancement in XAS, offering a pragmatic solution to Bragg peak contamination challenges, thereby expanding the applications of XAS in understanding complex materials under diverse experimental conditions.

3.
ACS Appl Electron Mater ; 6(2): 853-861, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38435801

ABSTRACT

The local environments of Sc and Y in predominantly ⟨002⟩ textured, Al1-xDoxN (Do = Sc, x = 0.25, 0.30 or Y, x = 0.25) sputtered thin films with wurtzite symmetry were investigated using X-ray absorption (XAS) and photoelectron (XPS) spectroscopies. We present evidence from the X-ray absorption fine structure (XAFS) spectra that, when x = 0.25, both Sc3+ and Y3+ ions are able to substitute for Al3+, thereby acquiring four tetrahedrally coordinated nitrogen ligands, i.e., coordination number (CN) of 4. On this basis, the crystal radius of the dopant species in the wurtzite lattice, not available heretofore, could be calculated. By modeling the scandium local environment, extended XAFS (EXAFS) analysis suggests that when x increases from 0.25 to 0.30, CN for a fraction of the Sc ions increases from 4 to 6, signaling octahedral coordination. This change occurs at a dopant concentration significantly lower than the reported maximum concentration of Sc (42 mol % Sc) in wurtzite (Al, Sc)N. XPS spectra provide support for our observation that the local environment of Sc in (Al, Sc)N may include more than one type of coordination.

4.
J Phys Chem C Nanomater Interfaces ; 128(11): 4470-4482, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38533242

ABSTRACT

Tailoring nanoscale catalysts to targeted applications is a vital component in reducing the carbon footprint of industrial processes; however, understanding and controlling the nanostructure influence on catalysts is challenging. Molybdenum disulfide (MoS2), a transition metal dichalcogenide (TMD) material, is a popular example of a nonplatinum-group-metal catalyst with tunable nanoscale properties. Doping with transition metal atoms, such as cobalt, is one method of enhancing its catalytic properties. However, the location and influence of dopant atoms on catalyst behavior are poorly understood. To investigate this knowledge gap, we studied the influence of Co dopants in MoS2 nanosheets on catalytic hydrodesulfurization (HDS) through a well-controlled, ligand-directed, tunable colloidal doping approach. X-ray absorption spectroscopy and density functional theory calculations revealed the nonmonotonous relationship between dopant concentration, location, and activity in HDS. Catalyst activity peaked at 21% Co:Mo as Co saturates the edge sites and begins basal plane doping. While Co prefers to dope the edges over basal sites, basal Co atoms are demonstrably more catalytically active than edge Co. These findings provide insight into the hydrogenolysis behavior of doped TMDs and can be extended to other TMD materials.

5.
ACS Nano ; 18(4): 3286-3294, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227802

ABSTRACT

The controlled design of bimetallic nanoparticles (BNPs) is a key goal in tailoring their catalytic properties. Recently, biomimetic pathways demonstrated potent control over the distribution of different metals within BNPs, but a direct understanding of the peptide effect on the compositional distribution at the interparticle and intraparticle levels remains lacking. We synthesized two sets of PtAu systems with two peptides and correlated their structure, composition, and distributions with the catalytic activity. Structural and compositional analyses were performed by a combined machine learning-assisted refinement of X-ray absorption spectra and Z-contrast measurements by scanning transmission electron microscopy. The difference in the catalytic activities between nanoparticles synthesized with different peptides was attributed to the details of interparticle distribution of Pt and Au across these markedly heterogeneous systems, comprising Pt-rich, Au-rich, and Au core/Pt shell nanoparticles. The total amount of Pt in the shells of the BNPs was proposed to be the key catalytic activity descriptor. This approach can be extended to other systems of metals and peptides to facilitate the targeted design of catalysts with the desired activity.

6.
Commun Chem ; 6(1): 264, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052925

ABSTRACT

Single-atom catalysts (SACs) are particularly sensitive to external conditions, complicating the identification of catalytically active species and active sites under in situ or operando conditions. We developed a methodology for tracing the structural evolution of SACs to nanoparticles, identifying the active species and their link to the catalytic activity for the reverse water gas shift (RWGS) reaction. The new method is illustrated by studying structure-activity relationships in two materials containing Pt SACs on ceria nanodomes, supported on either ceria or titania. These materials exhibited distinctly different activities for CO production. Multimodal operando characterization attributed the enhanced activity of the titania-supported catalysts at temperatures below 320 ˚C to the formation of unique Pt sites at the ceria-titania interface capable of forming Pt nanoparticles, the active species for the RWGS reaction. Migration of Pt nanoparticles to titania support was found to be responsible for the deactivation of titania-supported catalysts at elevated temperatures. Tracking the migration of Pt atoms provides a new opportunity to investigate the activation and deactivation of Pt SACs for the RWGS reaction.

7.
Nat Commun ; 14(1): 7371, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37963883

ABSTRACT

Electrostrictors, materials developing mechanical strain proportional to the square of the applied electric field, present many advantages for mechanical actuation as they convert electrical energy into mechanical, but not vice versa. Both high relative permittivity and reliance on Pb as the key component in commercial electrostrictors pose serious practical and health problems. Here we describe a low relative permittivity (<250) ceramic, ZrxCe1-xO2 (x < 0.2), that displays electromechanical properties rivaling those of the best performing electrostrictors: longitudinal electrostriction strain coefficient ~10-16 m2/V2; relaxation frequency ≈ a few kHz; and strain ≥0.02%. Combining X-ray absorption spectroscopy, atomic-level modeling and electromechanical measurements, here we show that electrostriction in ZrxCe1-xO2 is enabled by elastic dipoles produced by anharmonic motion of the smaller isovalent dopant (Zr). Unlike the elastic dipoles in aliovalent doped ceria, which are present even in the absence of an applied elastic or electric field, the elastic dipoles in ZrxCe1-xO2 are formed only under applied anisotropic field. The local descriptors of electrostrictive strain, namely, the cation size mismatch and dynamic anharmonicity, are sufficiently versatile to guide future searches in other polycrystalline solids.

8.
Chem Sci ; 14(44): 12582-12588, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38020390

ABSTRACT

"Single - atom" catalysts (SACs) have been the focus of intense research, due to debates about their reactivity and challenges toward determining and designing "single - atom" (SA) sites. To address the challenge, in this work, we designed Pt SACs supported on Gd-doped ceria (Pt/CGO), which showed improved activity for CO oxidation compared to its counterpart, Pt/ceria. The enhanced activity of Pt/CGO was associated with a new Pt SA site which appeared only in the Pt/CGO catalyst under CO pretreatment at elevated temperatures. Combined X-ray and optical spectroscopies revealed that, at this site, Pt was found to be d-electron rich and bridged with Gd-induced defects via an oxygen vacancy. As explained by density functional theory calculations, this site opened a new path via a dicarbonyl intermediate for CO oxidation with a greatly reduced energy barrier. These results provide guidance for rationally improving the catalytic properties of SA sites for oxidation reactions.

9.
Nat Commun ; 14(1): 6666, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37863924

ABSTRACT

Highly effective and selective noble metal-free catalysts attract significant attention. Here, a single-atom iron catalyst is fabricated by saturated adsorption of trace iron onto zeolitic imidazolate framework-8 (ZIF-8) followed by pyrolysis. Its performance toward catalytic transfer hydrogenation of furfural is comparable to state-of-the-art catalysts and up to four orders higher than other Fe catalysts. Isotopic labeling experiments demonstrate an intermolecular hydride transfer mechanism. First principles simulations, spectroscopic calculations and experiments, and kinetic correlations reveal that the synthesis creates pyrrolic Fe(II)-plN3 as the active center whose flexibility manifested by being pulled out of the plane, enabled by defects, is crucial for collocating the reagents and allowing the chemistry to proceed. The catalyst catalyzes chemoselectively several substrates and possesses a unique trait whereby the chemistry is hindered for more acidic substrates than the hydrogen donors. This work paves the way toward noble-metal free single-atom catalysts for important chemical reactions.

10.
ACS Appl Mater Interfaces ; 15(34): 40343-40354, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37590263

ABSTRACT

This paper reports a robust strategy to catalyze in situ C-H oxidation by combining cobalt (Co) single-atom catalysts (SACs) and horseradish peroxidase (HRP). Co SACs were synthesized using the complex of Co phthalocyanine with 3-propanol pyridine at the two axial positions as the Co source to tune the coordination environment of Co by the stepwise removal of axial pyridine moieties under thermal annealing. These structural features of Co sites, as confirmed by infrared and X-ray absorption spectroscopy, were strongly correlated to their reactivity. All Co catalysts synthesized below 300 °C were inactive due to the full coordination of Co sites in octahedral geometry. Increasing the calcination temperature led to an improvement in catalytic activity for reducing O2, although molecular Co species with square planar coordination obtained below 600 °C were less selective to reduce O2 to H2O2 through the two-electron pathway. Co SACs obtained at 800 °C showed superior activity in producing H2O2 with a selectivity of 82-85% in a broad potential range. In situ production of H2O2 was further coupled with HRP to drive the selective C-H bond oxidation in 2-naphthol. Our strategy provides new insights into the design of highly effective, stable SACs for selective C-H bond activation when coupled with natural enzymes.


Subject(s)
Hydrogen Peroxide , Peroxidase , Biocatalysis , Peroxidases , Horseradish Peroxidase , Cobalt , Coloring Agents
11.
Angew Chem Int Ed Engl ; 62(37): e202306754, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37464925

ABSTRACT

Despite the recent progress in increasing the power generation of Anion-exchange membrane fuel cells (AEMFCs), their durability is still far lower than that of Proton exchange membrane fuel cells (PEMFCs). Using the complementary techniques of X-ray micro-computed tomography (CT), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) spectroscopy, we have identified Pt ion migration as an important factor to explain the decay in performance of AEMFCs. In alkaline media Pt+2 ions are easily formed which then either undergo dissolution into the carbon support or migrate to the membrane. In contrast to PEMFCs, where hydrogen cross over reduces the ions forming a vertical "Pt line" within the membrane, the ions in the AEM are trapped by charged groups within the membrane, leading to disintegration of the membrane and failure. Diffusion of the metal components is still observed when the Pt/C of the cathode is substituted with a FeCo-N-C catalyst, but in this case the Fe and Co ions are not trapped within the membrane, but rather migrate into the anode, thereby increasing the stability of the membrane.

12.
J Am Chem Soc ; 145(9): 5410-5421, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36825993

ABSTRACT

We report a synthesis method for highly monodisperse Cu-Pt alloy nanoparticles. Small and large Cu-Pt particles with a Cu/Pt ratio of 1:1 can be obtained through colloidal synthesis at 300 °C. The fresh particles have a Pt-rich surface and a Cu-rich core and can be converted into an intermetallic phase after annealing at 800 °C under H2. First, we demonstrated the stability of fresh particles under redox conditions at 400 °C, as the Pt-rich surface prevents substantial oxidation of Cu. Then, a combination of in situ scanning transmission electron microscopy, in situ X-ray absorption spectroscopy, and CO oxidation measurements of the intermetallic CuPt phase before and after redox treatments at 800 °C showed promising activity and stability for CO oxidation. Full oxidation of Cu was prevented after exposure to O2 at 800 °C. The activity and structure of the particles were only slightly changed after exposure to O2 at 800 °C and were recovered after re-reduction at 800 °C. Additionally, the intermetallic CuPt phase showed enhanced catalytic properties compared to the fresh particles with a Pt-rich surface or pure Pt particles of the same size. Thus, the incorporation of Pt with Cu does not lead to a rapid deactivation and degradation of the material, as seen with other bimetallic systems. This work provides a synthesis route to control the design of Cu-Pt nanostructures and underlines the promising properties of these alloys (intermetallic and non-intermetallic) for heterogeneous catalysis.

13.
Adv Mater ; 35(5): e2208332, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36398421

ABSTRACT

Doped heavy metal-free III-V semiconductor nanocrystal quantum dots (QDs) are of great interest both from the fundamental aspects of doping in highly confined structures, and from the applicative side of utilizing such building blocks in the fabrication of p-n homojunction devices. InAs nanocrystals (NCs), that are of particular relevance for short-wave IR detection and emission applications, manifest heavy n-type character poising a challenge for their transition to p-type behavior. The p-type doping of InAs NCs is presented with Zn - enabling control over the charge carrier type in InAs QDs field effect transistors. The post-synthesis doping reaction mechanism is studied for Zn precursors with varying reactivity. Successful p-type doping is achieved by the more reactive precursor, diethylzinc. Substitutional doping by Zn2+ replacing In3+ is established by X-ray absorption spectroscopy analysis. Furthermore, enhanced near infrared photoluminescence is observed due to surface passivation by Zn as indicated from elemental mapping utilizing high-resolution electron microscopy corroborated by X-ray photoelectron spectroscopy study. The demonstrated ability to control the carrier type, along with the improved emission characteristics, paves the way towards fabrication of optoelectronic devices active in the short-wave infrared region utilizing heavy-metal free nanocrystal building blocks.

14.
J Chem Phys ; 157(23): 234706, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36550054

ABSTRACT

The effect of gases on the surface composition of Cu-Pt bimetallic catalysts has been tested by in situ infrared (IR) and x-ray absorption spectroscopies. Diffusion of Pt atoms within the Cu-Pt nanoparticles was observed both in vacuum and under gaseous atmospheres. Vacuum IR spectra of CO adsorbed on CuPtx/SBA-15 catalysts (x = 0-∞) at 125 K showed no bonding on Pt regardless of Pt content, but reversible Pt segregation to the surface was seen with the high-Pt-content (x ≥ 0.2) samples upon heating to 225 K. In situ IR spectra in CO atmospheres also highlighted the reversible segregation of Pt to the surface and its diffusion back into the bulk when cycling the temperature from 295 to 495 K and back, most evidently for diluted single-atom alloy catalysts (x ≤ 0.01). Similar behavior was possibly observed under H2 using small amounts of CO as a probe molecule. In situ x-ray absorption near-edge structure data obtained for CuPt0.2/SBA-15 under both CO and He pointed to the metallic nature of the Pt atoms irrespective of gas or temperature, but analysis of the extended x-ray absorption fine structure identified a change in coordination environment around the Pt atoms, from a (Pt-Cu):(Pt-Pt) coordination number ratio of ∼6:6 at or below 445 K to 8:4 at 495 K. The main conclusion is that Cu-Pt bimetallic catalysts are dynamic, with the composition of their surfaces being dependent on temperature in gaseous environments.

15.
Chem Rev ; 122(9): 8758-8808, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35254051

ABSTRACT

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.


Subject(s)
Alloys , Oxides , Catalysis , Catalytic Domain , Metals , Oxidation-Reduction , Oxides/chemistry
16.
Phys Chem Chem Phys ; 24(8): 5116-5124, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35156671

ABSTRACT

"Single-atom" catalysts (SACs) have demonstrated excellent activity and selectivity in challenging chemical transformations such as photocatalytic CO2 reduction. For heterogeneous photocatalytic SAC systems, it is essential to obtain sufficient information of their structure at the atomic level in order to understand reaction mechanisms. In this work, a SAC was prepared by grafting a molecular cobalt catalyst on a light-absorbing carbon nitride surface. Due to the sensitivity of the X-ray absorption near edge structure (XANES) spectra to subtle variances in the Co SAC structure in reaction conditions, different machine learning (ML) methods, including principal component analysis, K-means clustering, and neural network (NN), were utilized for in situ Co XANES data analysis. As a result, we obtained quantitative structural information of the SAC nearest atomic environment, thereby extending the NN-XANES approach previously demonstrated for nanoparticles and size-selective clusters.

17.
Nat Commun ; 13(1): 832, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35149699

ABSTRACT

Rational catalyst design is crucial toward achieving more energy-efficient and sustainable catalytic processes. Understanding and modeling catalytic reaction pathways and kinetics require atomic level knowledge of the active sites. These structures often change dynamically during reactions and are difficult to decipher. A prototypical example is the hydrogen-deuterium exchange reaction catalyzed by dilute Pd-in-Au alloy nanoparticles. From a combination of catalytic activity measurements, machine learning-enabled spectroscopic analysis, and first-principles based kinetic modeling, we demonstrate that the active species are surface Pd ensembles containing only a few (from 1 to 3) Pd atoms. These species simultaneously explain the observed X-ray spectra and equate the experimental and theoretical values of the apparent activation energy. Remarkably, we find that the catalytic activity can be tuned on demand by controlling the size of the Pd ensembles through catalyst pretreatment. Our data-driven multimodal approach enables decoding of reactive structures in complex and dynamic alloy catalysts.

18.
Nat Commun ; 12(1): 7096, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34876582

ABSTRACT

Some fundamental concepts of catalysis are not fully explained but are of paramount importance for the development of improved catalysts. An example is the concept of structure insensitive reactions, where surface-normalized activity does not change with catalyst metal particle size. Here we explore this concept and its relation to surface reconstruction on a set of silica-supported Ni metal nanoparticles (mean particle sizes 1-6 nm) by spectroscopically discerning a structure sensitive (CO2 hydrogenation) from a structure insensitive (ethene hydrogenation) reaction. Using state-of-the-art techniques, inter alia in-situ STEM, and quick-X-ray absorption spectroscopy with sub-second time resolution, we have observed particle-size-dependent effects like restructuring which increases with increasing particle size, and faster restructuring for larger particle sizes during ethene hydrogenation while for CO2 no such restructuring effects were observed. Furthermore, a degree of restructuring is irreversible, and we also show that the rate of carbon diffusion on, and into nanoparticles increases with particle size. We finally show that these particle size-dependent effects induced by ethene hydrogenation, can make a structure sensitive reaction (CO2 hydrogenation), structure insensitive. We thus postulate that structure insensitive reactions are actually apparently structure insensitive, which changes our fundamental understanding of the empirical observation of structure insensitivity.

19.
ACS Nano ; 15(12): 20619-20632, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34780150

ABSTRACT

Platinum is the primary catalyst for many chemical reactions in the field of heterogeneous catalysis. However, platinum is both expensive and rare. Therefore, it is advantageous to combine Pt with another metal to reduce cost while also enhancing stability. To that end, Pt is often combined with Co to form Co-Pt nanocrystals. However, dynamical restructuring effects that occur during reaction in Co-Pt ensembles can impact catalytic properties. In this study, model Co2Pt3 nanoparticles supported on carbon were characterized during a redox cycle with two in situ approaches, namely, X-ray absorption spectroscopy (XAS) and scanning transmission electron microscopy (STEM) using a multimodal microreactor. The sample was exposed to temperatures up to 500 °C under H2, and then to O2 at 300 °C. Irreversible segregation of Co in the Co2Pt3 particles was seen during redox cycling, and substantial changes of the oxidation state of Co were observed. After H2 treatment, a fraction of Co could not be fully reduced and incorporated into a mixed Co-Pt phase. Reoxidation of the sample increased Co segregation, and the segregated material had a different valence state than in the fresh, oxidized sample. This in situ study describes dynamical restructuring effects in CoPt nanocatalysts at the atomic scale that are crucial to understand in order to improve the design of catalysts used in major chemical processes.

20.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: mdl-34654743

ABSTRACT

Magnetic nanoparticles are robust contrast agents for MRI and often produce particularly strong signal changes per particle. Leveraging these effects to probe cellular- and molecular-level phenomena in tissue can, however, be hindered by the large sizes of typical nanoparticle contrast agents. To address this limitation, we introduce single-nanometer iron oxide (SNIO) particles that exhibit superparamagnetic properties in conjunction with hydrodynamic diameters comparable to small, highly diffusible imaging agents. These particles efficiently brighten the signal in T1-weighted MRI, producing per-molecule longitudinal relaxation enhancements over 10 times greater than conventional gadolinium-based contrast agents. We show that SNIOs permeate biological tissue effectively following injection into brain parenchyma or cerebrospinal fluid. We also demonstrate that SNIOs readily enter the brain following ultrasound-induced blood-brain barrier disruption, emulating the performance of a gadolinium agent and providing a basis for future biomedical applications. These results thus demonstrate a platform for MRI probe development that combines advantages of small-molecule imaging agents with the potency of nanoscale materials.


Subject(s)
Contrast Media/administration & dosage , Magnetic Iron Oxide Nanoparticles/administration & dosage , Magnetic Resonance Imaging/methods , Animals , Blood-Brain Barrier , Contrast Media/pharmacokinetics , Magnetic Iron Oxide Nanoparticles/chemistry , Particle Size , Permeability , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...