Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2307632, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126914

ABSTRACT

Soft electronic circuits are crucial for wearable electronics, biomedical technologies, and soft robotics, requiring soft conductive materials with high conductivity, high strain limit, and stable electrical performance under deformation. Liquid metals (LMs) have become attractive candidates with high conductivity and fluidic compliance, while effective manufacturing methods are demanded. Digital light processing (DLP)-based projection lithography is a high-resolution and high-throughput printing technique for primarily polymers and some metals. If LMs can be printed with DLP as well, the entire soft devices can be fabricated by one printer in a streamlined and highly efficient process. Herein, fast and facile DLP-based LM printing is achieved. Simply with 5-10 s of patterned ultraviolet (UV)-light exposure, a highly conductive and stretchable pattern can be printed using a photo-crosslinkable LM particle ink. The printed eutectic gallium indium traces feature high resolution (≈20 µm), conductivity (3 × 106 S m-1 ), stretchability (≈2500%), and excellent stability (consistent performance at different deformation). Various patterns are printed in diverse material systems for broad applications including stretchable displays, epidermal strain sensors, heaters, humidity sensors, conformal electrodes for electrography, and multi-layer actuators. The facile and scalable process, excellent performance, and diverse applications ensure its broad impact on soft electronic manufacturing.

2.
Adv Mater ; 34(32): e2201772, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35703311

ABSTRACT

Metal patterning via additive manufacturing has been phasing-in to broad applications in many medical, electronics, aerospace, and automotive industries. While previous efforts have produced various promising metal-patterning strategies, their complexity and high cost have limited their practical application in rapid production and prototyping. Herein, a one-step gold printing technique based on anion-assisted photochemical deposition (APD), which can directly print highly conductive gold patterns (1.08 × 107 S m-1 ) under ambient conditions without post-annealing treatment, is introduced. Uniquely, the APD uses specific ion effects with projection lithography to pattern Au nanoparticles and simultaneously sinter them into tunable porous gold structures. The significant influence of kosmotropic or chaotropic anions in the precursor ink on tuning the morphologies and conductivities of the printed patterns by employing a series of different ions, including Cl- ions, in the printing process is presented. Additionally, the resistance stabilities and the electrochemical properties of the APD-printed gold patterns are carefully investigated. The high conductivity and excellent conformability of the printed Au electrodes are demonstrated with reliable performance in electrophysiological signal delivery and acquisition for biomedical applications. This work exploits the potential of photochemical-deposition-based metal patterning in flexible electronic manufacturing.

3.
Sci Robot ; 6(53)2021 04 07.
Article in English | MEDLINE | ID: mdl-34043561

ABSTRACT

Mimicking biological neuromuscular systems' sensory motion requires the unification of sensing and actuation in a singular artificial muscle material, which must not only actuate but also sense their own motions. These functionalities would be of great value for soft robotics that seek to achieve multifunctionality and local sensing capabilities approaching natural organisms. Here, we report a soft somatosensitive actuating material using an electrically conductive and photothermally responsive hydrogel, which combines the functions of piezoresistive strain/pressure sensing and photo/thermal actuation into a single material. Synthesized through an unconventional ice-templated ultraviolet-cryo-polymerization technique, the homogenous tough conductive hydrogel exhibited a densified conducting network and highly porous microstructure, achieving a unique combination of ultrahigh conductivity (36.8 milisiemens per centimeter, 103-fold enhancement) and mechanical robustness, featuring high stretchability (170%), large volume shrinkage (49%), and 30-fold faster response than conventional hydrogels. With the unique compositional homogeneity of the monolithic material, our hydrogels overcame a limitation of conventional physically integrated sensory actuator systems with interface constraints and predefined functions. The two-in-one functional hydrogel demonstrated both exteroception to perceive the environment and proprioception to kinesthetically sense its deformations in real time, while actuating with near-infinite degrees of freedom. We have demonstrated a variety of light-driven locomotion including contraction, bending, shape recognition, object grasping, and transporting with simultaneous self-monitoring. When connected to a control circuit, the muscle-like material achieved closed-loop feedback controlled, reversible step motion. This material design can also be applied to liquid crystal elastomers.


Subject(s)
Biomimetic Materials , Biomimetics , Robotics , Smart Materials , Acrylic Resins , Aniline Compounds , Animals , Artificial Organs , Electric Conductivity , Feedback, Sensory , Hydrogels , Light , Mechanical Phenomena , Muscles , Octopodiformes/physiology , Porosity , Proof of Concept Study , Proprioception , Sensation , Temperature , Tensile Strength
4.
Nature ; 590(7847): 594-599, 2021 02.
Article in English | MEDLINE | ID: mdl-33627812

ABSTRACT

Natural load-bearing materials such as tendons have a high water content of about 70 per cent but are still strong and tough, even when used for over one million cycles per year, owing to the hierarchical assembly of anisotropic structures across multiple length scales1. Synthetic hydrogels have been created using methods such as electro-spinning2, extrusion3, compositing4,5, freeze-casting6,7, self-assembly8 and mechanical stretching9,10 for improved mechanical performance. However, in contrast to tendons, many hydrogels with the same high water content do not show high strength, toughness or fatigue resistance. Here we present a strategy to produce a multi-length-scale hierarchical hydrogel architecture using a freezing-assisted salting-out treatment. The produced poly(vinyl alcohol) hydrogels are highly anisotropic, comprising micrometre-scale honeycomb-like pore walls, which in turn comprise interconnected nanofibril meshes. These hydrogels have a water content of 70-95 per cent and properties that compare favourably to those of other tough hydrogels and even natural tendons; for example, an ultimate stress of 23.5 ± 2.7 megapascals, strain levels of 2,900 ± 450 per cent, toughness of 210 ± 13 megajoules per cubic metre, fracture energy of 170 ± 8 kilojoules per square metre and a fatigue threshold of 10.5 ± 1.3 kilojoules per square metre. The presented strategy is generalizable to other polymers, and could expand the applicability of structural hydrogels to conditions involving more demanding mechanical loading.

5.
ACS Appl Mater Interfaces ; 11(50): 47468-47475, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31741387

ABSTRACT

Heterogeneous growth in a myriad of biological systems can lead to the formation of distinct morphologies during the maturation processes of different species. We demonstrate that the distinct circumferential buckling observed in pumpkins can be reproduced by a core-shell barrel structure using four-dimensional (4D) printing, taking advantage of digital light processing (DLP)-based three-dimensional (3D) printing and stimulus-responsive hydrogels. The mechanical mismatch between the stiff core and compliant shell results in buckling instability on the surface. The initiation and development of the buckling are governed by the ratio of core/shell radius, the ratio of core/shell swelling ratios, and the mismatch between the core and shell in stiffness. Furthermore, the rigid core not only acts as a source of circumferential confinement but also sets a boundary at the poles of the entire structure. The heterogeneous structures with controllable buckling geometrically and structurally behave much like plants' fruits. This replicates the biological morphologic change and elucidates the general mechanism and dynamics of the complex instability formation of heterogeneous 3D objects.

SELECTION OF CITATIONS
SEARCH DETAIL
...