Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Front Neurol ; 12: 669449, 2021.
Article in English | MEDLINE | ID: mdl-34220679

ABSTRACT

Stem cell and immune cell therapies are being investigated as a potential therapeutic modality for CNS disorders, performing functions such as targeted drug or growth factor delivery, tumor cell destruction, or inflammatory regulation. Despite promising preclinical studies, delivery routes for maximizing cell engraftment, such as stereotactic or intrathecal injection, are invasive and carry risks of hemorrhage and infection. Recent developments in MRI-guided focused ultrasound (MRgFUS) technology have significant implications for treating focal CNS pathologies including neurodegenerative, vascular and malignant processes. MRgFUS is currently employed in the clinic for treating essential tremor and Parkinson's Disease by producing precise, incisionless, transcranial lesions. This non-invasive technology can also be modified for non-destructive applications to safely and transiently open the blood-brain barrier (BBB) to deliver a range of therapeutics, including cells. This review is meant to familiarize the neuro-interventionalist with this topic and discusses the use of MRgFUS for facilitating cellular delivery to the brain. A detailed and comprehensive description is provided on routes of cell administration, imaging strategies for targeting and tracking cellular delivery and engraftment, biophysical mechanisms of BBB enhanced permeability, supportive proof-of-concept studies, and potential for clinical translation.

2.
Phys Med Biol ; 65(12): 125017, 2020 06 22.
Article in English | MEDLINE | ID: mdl-32460260

ABSTRACT

Nanocarriers offer a promising approach to significantly improve therapeutic delivery to solid tumors as well as limit the side effects associated with anti-cancer agents. However, their relatively large size can negatively affect their ability to efficiently penetrate into more interior tumor regions, ultimately reducing therapeutic efficacy. Poor penetration of large agents such as nanocarriers is attributed to factors in the tumor microenvironment such as elevated interstitial fluid pressure (IFP) and fibrillar collagen in the extracellular matrix. Our previous studies reported that pretreatment of solid tumor xenografts with nondestructive pulsed focused ultrasound (pFUS) can improve the delivery and subsequent therapy of a variety of therapeutic formulations in different tumor models, where the results were associated with expanded extracellular spaces (ECS), an increase in hydraulic conductivity, and decrease in tissue stiffness. Here, we demonstrate the inverse relationship between IFP and the penetration of systemically administered nanoparticle (NP) probes, where IFP increased from the tumor periphery to their center. Furthermore, we show that pretreatment with pFUS can safely reduce IFP and improve NP delivery; especially into the center of the tumors. These results coincide with effects generated in the fibrillar collagen network microstructure in the ECS as determined by quantitative polarized light microscopy. Whole tumor and histomorphometric analysis, however, did not show significant differences in collagen area fraction or collagen feature solidity, as well as tumor cross-sectional area and aspect ratio, as a result of the treatments. We present a biophysical model connecting the experimental results, where pFUS-mediated cytoarchitectural changes are associated with improved redistribution of the interstitial fluid and lower IFP. The resulting improvement in NP delivery supports our previous therapeutic studies and may have implications for clinical applications to improve therapeutic outcomes in cancer therapy.


Subject(s)
Cell Transformation, Neoplastic , Extracellular Fluid/metabolism , Nanoparticles/metabolism , Pressure , Squamous Cell Carcinoma of Head and Neck/pathology , Ultrasonic Waves , Animals , Biological Transport , Humans
3.
Biomed Eng Online ; 18(1): 36, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30922312

ABSTRACT

BACKGROUND: The clinical applications of transcranial focused ultrasound continue to expand and include ablation as well as drug delivery applications in the brain, where treatments are typically guided by MRI. Although MRI-guided focused ultrasound systems are also preferred for many preclinical investigations, they are expensive to purchase and operate, and require the presence of a nearby imaging center. For many basic mechanistic studies, however, MRI is not required. The purpose of this study was to design, construct, characterize and evaluate a portable, custom, laser-guided focused ultrasound system for noninvasive, transcranial treatments in small rodents. METHODS: The system comprised an off-the-shelf focused ultrasound transducer and amplifier, with a custom cone fabricated for direct coupling of the transducer to the head region. A laser-guidance apparatus was constructed with a 3D stage for accurate positioning to 1 mm. Pressure field simulations were performed to demonstrate the effects of the coupling cone and the sealing membrane, as well as for determining the location of the focus and acoustic transmission across rat skulls over a range of sizes. Hydrophone measurements and exposures in hydrogels were used to assess the accuracy of the simulations. In vivo treatments were performed in rodents for opening the blood-brain barrier and to assess the performance and accuracy of the system. The effects of varying the acoustic pressure, microbubble dose and animal size were evaluated in terms of efficacy and safety of the treatments. RESULTS: The simulation results were validated by the hydrophone measurements and exposures in the hydrogels. The in vivo treatments demonstrated the ability of the system to open the blood-brain barrier. A higher acoustic pressure was required in larger-sized animals, as predicted by the simulations and transmission measurements. In a particular sized animal, the degree of blood-brain barrier opening, and the safety of the treatments were directly associated with the microbubble dose. CONCLUSION: The focused ultrasound system that was developed was found to be a cost-effective alternative to MRI-guided systems as an investigational device that is capable of accurately providing noninvasive, transcranial treatments in rodents.


Subject(s)
Lasers , Ultrasonic Therapy/instrumentation , Animals , Blood-Brain Barrier/metabolism , Equipment Design , Female , Pressure , Rats , Rats, Sprague-Dawley , Transducers
4.
PLoS One ; 13(2): e0192240, 2018.
Article in English | MEDLINE | ID: mdl-29415084

ABSTRACT

Generating spatially controlled, non-destructive changes in the interstitial spaces of the brain has a host of potential clinical applications, including enhancing the delivery of therapeutics, modulating biological features within the tissue microenvironment, altering fluid and pressure dynamics, and increasing the clearance of toxins, such as plaques found in Alzheimer's disease. Recently we demonstrated that ultrasound can non-destructively enlarge the interstitial spaces of the brain ex vivo. The goal of the current study was to determine whether these effects could be reproduced in the living brain using non-invasive, transcranial MRI-guided focused ultrasound (MRgFUS). The left striatum of healthy rats was treated using MRgFUS. Computer simulations facilitated treatment planning, and targeting was validated using MRI acoustic radiation force impulse imaging. Following MRgFUS treatments, Evans blue dye or nanoparticle probes were infused to assess changes in the interstitial space. In MRgFUS-treated animals, enhanced dispersion was observed compared to controls for 70 nm (12.8 ± 0.9 mm3 vs. 10.6 ± 1.0 mm3, p = 0.01), 200 nm (10.9 ± 1.4 mm3 vs. 7.4 ± 0.7 mm3, p = 0.01) and 700 nm (7.5 ± 0.4 mm3 vs. 5.4 ± 1.2 mm3, p = 0.02) nanoparticles, indicating enlargement of the interstitial spaces. No evidence of significant histological or electrophysiological injury was identified. These findings suggest that transcranial ultrasound can safely and effectively modulate the brain interstitium and increase the dispersion of large therapeutic entities such as particulate drug carriers or modified viruses. This has the potential to expand the therapeutic uses of MRgFUS.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Nanoparticles/administration & dosage , Polymers/administration & dosage , Ultrasonography/methods , Animals , Coloring Agents/administration & dosage , Elasticity Imaging Techniques/methods , Rats , Rats, Sprague-Dawley
5.
Cell Transplant ; 26(7): 1235-1246, 2017 07.
Article in English | MEDLINE | ID: mdl-28933214

ABSTRACT

Focused ultrasound (FUS)-mediated blood-brain barrier disruption (BBBD) can enable even large therapeutics such as stem cells to enter the brain from the bloodstream. However, the efficiency is relatively low. Our previous study showed that human neural progenitor cells (hNPCs) loaded with superparamagnetic iron oxide nanoparticles (SPIONs) in culture were attracted by an external magnetic field. In vivo, enhanced brain retention was observed near a magnet mounted on the skull in a rat model of traumatic brain injury, where BBBD also occurs. The goal of the current study was to determine whether magnetic attraction of SPION-loaded hNPCs would also enhance their retention in the brain after FUS-mediated BBBD. A small animal magnetic resonance imaging (MRI)-guided FUS system operating at 1.5 MHz was used to treat rats (∼120 g) without tissue damage or hemorrhage. Evidence of successful BBBD was validated with both radiologic enhancement of gadolinium on postsonication TI MRI and whole brain section visualization of Evans blue dye. The procedure was then combined with the application of a powerful magnet to the head directly after intravenous injection of the hNPCs. Validation of cells within the brain was performed by staining with Perls' Prussian blue for iron and by immunohistochemistry with a human-specific antigen. By injecting equal numbers of iron oxide (SPIONs) and noniron oxide nanoparticles-loaded hNPCs, each labeled with a different fluorophore, we found significantly greater numbers of SPIONs-loaded cells retained in the brain at the site of BBBD as compared to noniron loaded cells. This result was most pronounced in regions of the brain closest to the skull (dorsal cortex) in proximity to the magnet surface. A more powerful magnet and a Halbach magnetic array resulted in more effective retention of SPION-labeled cells in even deeper brain regions such as the striatum and ventral cortex. There, up to 90% of hNPCs observed contained SPIONs compared to 60% to 70% with the less powerful magnet. Fewer cells were observed at 24 h posttreatment compared to 2 h (primarily in the dorsal cortex). These results demonstrate that magnetic attraction can substantially enhance the retention of stem cells after FUS-mediated BBBD. This procedure could provide a safer and less invasive approach for delivering stem cells to the brain, compared to direct intracranial injections, substantially reducing the risk of bleeding and infection.


Subject(s)
Blood-Brain Barrier/pathology , Magnetic Resonance Imaging/methods , Magnetics , Neural Stem Cells/transplantation , Ultrasonics , Animals , Dextrans/chemistry , Female , Humans , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Rats, Sprague-Dawley
6.
J Cent Nerv Syst Dis ; 9: 1179573517705670, 2017.
Article in English | MEDLINE | ID: mdl-28615985

ABSTRACT

Although the use of ultrasound as a potential therapeutic modality in the brain has been under study for several decades, relatively few neuroscientists or neurologists are familiar with this technology. Stereotactic brain lesioning had been widely used as a treatment for medically refractory patients with essential tremor (ET), Parkinson disease (PD), and dystonia but has been largely replaced by deep brain stimulation (DBS) surgery, with advantages both in safety and efficacy. However, DBS is associated with complications including intracerebral hemorrhage, infection, and hardware malfunction. The occurrence of these complications has spurred interest in less invasive stereotactic brain lesioning methods including magnetic resonance imaging-guided high intensity-focused ultrasound (FUS) surgery. Engineering advances now allow sound waves to be targeted noninvasively through the skull to a brain target. High intensities of sonic energy can create a coagulation lesion similar to that of older radiofrequency stereotactic methods, but without opening the skull, recent Food and Drug Administration approval of unilateral thalamotomy for treatment of ET. Clinical studies of stereotactic FUS for aspects of PD are underway. Moderate intensity, pulsed FUS has also demonstrated the potential to safely open the blood-brain barrier for localized delivery of therapeutics including proteins, genes, and cell-based therapy for PD and related disorders. The goal of this review is to provide basic and clinical neuroscientists with a level of understanding to interact with medical physicists, biomedical engineers, and radiologists to accelerate the application of this powerful technology to brain disease.

7.
Neurotherapeutics ; 14(2): 393-404, 2017 04.
Article in English | MEDLINE | ID: mdl-28244011

ABSTRACT

Therapeutic ultrasound is only beginning to be applied to neurologic conditions, but the potential of this modality for a wide spectrum of brain applications is high. Engineering advances now allow sound waves to be targeted through the skull to a brain region selected with real time magnetic resonance imaging and thermography, using a commercial array of focused emitters. High intensities of sonic energy can create a coagulation lesion similar to that of older radiofrequency stereotactic methods, but without opening the skull. This has led to the recent Food and Drug Administration approval of focused ultrasound (FUS) thalamotomy for unilateral treatment of essential tremor. Clinical studies of stereotactic FUS for aspects of Parkinson's disease, chronic pain, and refractory psychiatric indications are underway, with promising results. Moderate-intensity FUS has the potential to safely open the blood-brain barrier for localized delivery of therapeutics, while low levels of sonic energy can be used as a form of neuromodulation.


Subject(s)
Central Nervous System Diseases/therapy , Ultrasonic Therapy , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/radiation effects , Brain Diseases/therapy , Drug Delivery Systems , Humans , Magnetic Resonance Imaging , Movement Disorders/therapy , Neurosurgical Procedures , Parkinson Disease/therapy , Stereotaxic Techniques , Ultrasonic Surgical Procedures
8.
Sci Rep ; 7: 41550, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169278

ABSTRACT

Mesenchymal stem cells (MSC) are promising therapeutics for critical limb ischemia (CLI). Mechanotransduction from pulsed focused ultrasound (pFUS) upregulates local chemoattractants to enhance homing of intravenously (IV)-infused MSC and improve outcomes. This study investigated whether pFUS exposures to skeletal muscle would improve local homing of iv-infused MSCs and their therapeutic efficacy compared to iv-infused MSCs alone. CLI was induced by external iliac arterial cauterization in 10-12-month-old mice. pFUS/MSC treatments were delayed 14 days, when surgical inflammation subsided. Mice were treated with iv-saline, pFUS alone, IV-MSC, or pFUS and IV-MSC. Proteomic analyses revealed pFUS upregulated local chemoattractants and increased MSC tropism to CLI muscle. By 7 weeks post-treatment, pFUS + MSC significantly increased perfusion and CD31 expression, while reducing fibrosis compared to saline. pFUS or MSC alone reduced fibrosis, but did not increase perfusion or CD31. Furthermore, MSCs homing to pFUS-treated CLI muscle expressed more vascular endothelial growth factor (VEGF) and interleukin-10 (IL-10) than MSCs homing to non-pFUS-treated muscle. pFUS + MSC improved perfusion and vascular density in this clinically-relevant CLI model. The molecular effects of pFUS increased both MSC homing and MSC production of VEGF and IL-10, suggesting microenvironmental changes from pFUS also increased potency of MSCs in situ to further enhance their efficacy.


Subject(s)
Extremities/blood supply , Ischemia/pathology , Ischemia/physiopathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Reperfusion , Ultrasonic Waves , Animals , Biomarkers , Disease Models, Animal , Extremities/radiation effects , Female , Fibrosis , Interleukin-10/genetics , Interleukin-10/metabolism , Ischemia/diagnostic imaging , Ischemia/therapy , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Proteome , Proteomics/methods , Reperfusion/methods , Ultrasonography, Doppler, Color , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
9.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 461-470, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27770917

ABSTRACT

In vitro investigations of ultrasound mediated, intracellular drug and gene delivery (i.e. sonoporation) are typically carried out in cells cultured in standard plastic well plates. This creates conditions that poorly resemble in vivo conditions, as well as generating unwanted ultrasound phenomena that may confound the interpretation of results. Here, we present our results in the development of a biological scaffold for sonoporation studies. The scaffolds were comprised of cellulose fibers coated with chitosan and gelatin. Scaffold formulation was optimized for adherence and proliferation of mouse fibroblasts in terms of the ratio and relative concentration of the two constituents. The scaffolds were also shown to significantly reduce ultrasound reflections compared to the plastic well plates. A custom treatment chamber was designed and built, and the occurrence of acoustic cavitation in the chamber during the ultrasound treatments was detected; a requirement for the process of sonoporation. Finally, experiments were carried out to optimize the ultrasound exposures to minimize cellular damage. Ultrasound exposure was then shown to enable the uptake of 100nm fluorescently labeled polystyrene nanoparticles in suspension into the cells seeded on scaffolds, compared to incubation of cell-seeded scaffolds with nanoparticles alone. These preliminary results set the basis for further development of this platform. They also provide motivation for the development of similar platforms for the controlled investigation of other ultrasound mediated cell and tissue therapies.


Subject(s)
Drug Delivery Systems , Gene Transfer Techniques , Intracellular Space/metabolism , Tissue Scaffolds/chemistry , Ultrasonics/methods , Acoustics , Animals , Cell Line , Chitosan/chemistry , Electroporation , Endocytosis , Gelatin/chemistry , Image Processing, Computer-Assisted , Luminescence , Mice , Microscopy, Fluorescence , Nanoparticles , Reproducibility of Results
10.
Neurosurgery ; 79(5): 643-654, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27552589

ABSTRACT

: Transcranial focused ultrasound (FUS) can noninvasively transmit acoustic energy with a high degree of accuracy and safety to targets and regions within the brain. Technological advances, including phased-array transducers and real-time temperature monitoring with magnetic resonance thermometry, have created new opportunities for FUS research and clinical translation. Neuro-oncology, in particular, has become a major area of interest because FUS offers a multifaceted approach to the treatment of brain tumors. FUS has the potential to generate cytotoxicity within tumor tissue, both directly via thermal ablation and indirectly through radiosensitization and sonodynamic therapy; to enhance the delivery of therapeutic agents to brain tumors by transiently opening the blood-brain barrier or improving distribution through the brain extracellular space; and to modulate the tumor microenvironment to generate an immune response. In this review, we describe each of these applications for FUS, the proposed mechanisms of action, and the preclinical and clinical studies that have set the foundation for using FUS in neuro-oncology. ABBREVIATIONS: BBB, blood-brain barrierCED, convection-enhanced delivery5-Ala, 5-aminolevulinic acidFUS, focused ultrasoundGBM, glioblastoma multiformeHSP, heat shock proteinMRgFUS, magnetic resonance-guided focused ultrasoundpFUS, pulsed focused ultrasound.


Subject(s)
Ablation Techniques/methods , Blood-Brain Barrier/metabolism , Brain Neoplasms/therapy , Glioblastoma/therapy , Ultrasonic Surgical Procedures/methods , Drug Delivery Systems , Glioma/therapy , Humans , Immunomodulation , Magnetic Resonance Imaging , Radiation Tolerance , Ultrasonic Therapy/methods
11.
Brain Res ; 1646: 543-550, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27369449

ABSTRACT

Diffusion within the extracellular and perivascular spaces of the brain plays an important role in biological processes, therapeutic delivery, and clearance mechanisms within the central nervous system. Recently, ultrasound has been used to enhance the dispersion of locally administered molecules and particles within the brain, but ultrasound-mediated effects on the brain parenchyma remain poorly understood. We combined an electron microscopy-based ultrastructural analysis with high-resolution tracking of non-adhesive nanoparticles in order to probe changes in the extracellular and perivascular spaces of the brain following a non-destructive pulsed ultrasound regimen known to alter diffusivity in other tissues. Freshly obtained rat brain neocortical slices underwent sham treatment or pulsed, low intensity ultrasound for 5min at 1MHz. Transmission electron microscopy revealed intact cells and blood vessels and evidence of enlarged spaces, particularly adjacent to blood vessels, in ultrasound-treated brain slices. Additionally, ultrasound significantly increased the diffusion rate of 100nm, 200nm, and 500nm nanoparticles that were injected into the brain slices, while 2000nm particles were unaffected. In ultrasound-treated slices, 91.6% of the 100nm particles, 20.7% of the 200nm particles, 13.8% of the 500nm particles, and 0% of the 2000nm particles exhibited diffusive motion. Thus, pulsed ultrasound can have meaningful structural effects on the brain extracellular and perivascular spaces without evidence of tissue disruption.


Subject(s)
Extracellular Space/radiation effects , Neocortex/radiation effects , Ultrasonic Waves , Animals , Diffusion , Extracellular Space/metabolism , Nanoparticles/administration & dosage , Neocortex/blood supply , Neocortex/metabolism , Neocortex/ultrastructure , Rats , Rats, Sprague-Dawley
12.
Curr Pharm Des ; 22(9): 1177-1193, 2016.
Article in English | MEDLINE | ID: mdl-26685681

ABSTRACT

The blood-brain barrier (BBB) poses a unique challenge for drug delivery to the central nervous system (CNS). The BBB consists of a continuous layer of specialized endothelial cells linked together by tight junctions, pericytes, nonfenestrated basal lamina, and astrocytic foot processes. This complex barrier controls and limits the systemic delivery of therapeutics to the CNS. Several innovative strategies have been explored to enhance the transport of therapeutics across the BBB, each with individual advantages and disadvantages. Ongoing advances in delivery approaches that overcome the BBB are enabling more effective therapies for CNS diseases. In this review, we discuss: (1) the physiological properties of the BBB, (2) conventional strategies to enhance paracellular and transcellular transport through the BBB, (3) emerging concepts to overcome the BBB, and (4) alternative CNS drug delivery strategies that bypass the BBB entirely. Based on these exciting advances, we anticipate that in the near future, drug delivery research efforts will lead to more effective therapeutic interventions for diseases of the CNS.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Diseases/drug therapy , Central Nervous System Agents/therapeutic use , Drug Delivery Systems , Animals , Humans
13.
Stem Cells ; 33(4): 1173-86, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25534849

ABSTRACT

Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (nonspecific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients, and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine.


Subject(s)
Cyclooxygenase 2 Inhibitors/pharmacology , Mechanotransduction, Cellular/physiology , Mesenchymal Stem Cells/physiology , Muscular Dystrophies , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Ultrasonic Waves , Animals , Cells, Cultured , Female , Humans , Mechanotransduction, Cellular/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/radiation effects , Mice , Mice, 129 Strain , Mice, Inbred C3H , Mice, Knockout , Muscular Dystrophies/pathology , Tumor Necrosis Factor-alpha/biosynthesis , Young Adult
14.
J Acoust Soc Am ; 133(3): 1827-34, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23464051

ABSTRACT

Gene therapy by intratumoral injection is a promising approach for treating solid tumors. However, this approach has limited success due to insufficient distribution of gene vectors used for gene delivery. Previous studies have shown that pulsed-focused ultrasound (pFUS) can enhance both systemic and local delivery of therapeutic agents in solid tumors and other disease models. Here, murine squamous cell carcinoma flank tumors were treated with single intratumoral injection of naked tumor necrosis factor-alpha (TNF-α) plasmid, either with or without a preceding pFUS exposure. The exposures were given at 1 MHz, at a spatial average, temporal peak intensity of 2660 W cm(-2), using 50 ms pulses, given at a pulse repetition frequency of 1 Hz. One hundred pulses were given at individual raster points, spaced evenly over the projected surface of the tumor at a distance of 2 mm. Exposures alone had no effect on tumor growth. Significant growth inhibition was observed with injection of TNF-α plasmid, and tumor growth was further inhibited with pFUS. Improved results with pFUS correlated with larger necrotic regions in histological sections and improved distribution and penetration of fluorescent surrogate nanoparticles. Electron microscopy demonstrated enlarged gaps between cells in exposed tissue, and remote acoustic palpation showed decreases in tissue stiffness after pFUS. Combined, these results suggest pFUS effects may be reducing barriers for tissue transport and additionally lowering interstitial fluid pressure to further improve delivery and distribution of injected plasmid for greater therapeutic effects. This suggests that pFUS could potentially be beneficial for improving local gene therapy treatment of human malignancies.


Subject(s)
Carcinoma, Squamous Cell/therapy , Genetic Therapy , Soft Tissue Neoplasms/therapy , Tumor Necrosis Factor-alpha/biosynthesis , Ultrasonics , Acoustics , Animals , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/ultrastructure , Female , Humans , Mice , Mice, Inbred C3H , Microscopy, Electron, Transmission , Necrosis , Palpation , Permeability , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/immunology , Soft Tissue Neoplasms/ultrastructure , Subcutaneous Tissue/immunology , Subcutaneous Tissue/ultrastructure , Time Factors , Tumor Burden , Tumor Necrosis Factor-alpha/genetics
15.
J Ther Ultrasound ; 1: 21, 2013.
Article in English | MEDLINE | ID: mdl-25093079

ABSTRACT

Although preclinical experiments are ultimately required to evaluate new therapeutic ultrasound exposures and devices prior to clinical trials, in vitro experiments can play an important role in the developmental process. A variety of in vitro methods have been developed, where each of these has demonstrated their utility for various test purposes. These include inert tissue-mimicking phantoms, which can incorporate thermocouples or cells and ex vivo tissue. Cell-based methods have also been used, both in monolayer and suspension. More biologically relevant platforms have also shown utility, such as blood clots and collagen gels. Each of these methods possesses characteristics that are well suited for various well-defined investigative goals. None, however, incorporate all the properties of real tissues, which include a 3D environment and live cells that may be maintained long-term post-treatment. This review is intended to provide an overview of the existing application-specific in vitro methods available to therapeutic ultrasound investigators, highlighting their advantages and limitations. Additional reporting is presented on the exciting and emerging field of 3D biological scaffolds, employing methods and materials adapted from tissue engineering. This type of platform holds much promise for achieving more representative conditions of those found in vivo, especially important for the newest sphere of therapeutic applications, based on molecular changes that may be generated in response to non-destructive exposures.

16.
J Control Release ; 162(1): 218-24, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22732476

ABSTRACT

The success of radioimmunotherapy for solid tumors remains elusive due to poor biodistribution and insufficient tumor accumulation, in part, due to the unique tumor microenvironment resulting in heterogeneous tumor antibody distribution. Pulsed high intensity focused ultrasound (pulsed-HIFU) has previously been shown to increase the accumulation of (111)In labeled B3 antibody (recognizes Lewis(y) antigen). The objective of this study was to investigate the tumor penetration and therapeutic efficacy of pulsed-HIFU exposures combined with (90)Y labeled B3 mAb in an A431 solid tumor model. The ability of pulsed-HIFU (1 M Hz, spatial averaged temporal peak intensity=2685 W cm(-2); pulse repetition frequency=1 Hz; duty cycle=5%) to improve the tumor penetration and therapeutic efficacy of (90)Y labeled B3 mAb ((90)Y-B3) was evaluated in Le(y)-positive A431 tumors. Antibody penetration from the tumor surface and blood vessel surface was evaluated with fluorescently labeled B3, epi-fluorescent microscopy, and custom image analysis. Tumor size was monitored to determine treatment efficacy, indicated by survival, following various treatments with pulsed-HIFU and/or (90)Y-B3. The pulsed-HIFU exposures did not affect the vascular parameters including microvascular density, vascular size, and vascular architecture; although 1.6-fold more antibody was delivered to the solid tumors when combined with pulsed-HIFU. The distribution and penetration of the antibodies were significantly improved (p-value<0.05) when combined with pulsed-HIFU, only in the tumor periphery. Pretreatment with pulsed-HIFU significantly improved (p-value<0.05) survival over control treatments.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/therapeutic use , Immunoconjugates/administration & dosage , Immunoconjugates/therapeutic use , Neoplasms/therapy , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Cell Line, Tumor , Humans , Immunoconjugates/immunology , Immunoconjugates/pharmacokinetics , Mice , Mice, Nude , Neoplasms/immunology , Neoplasms/pathology , Radioimmunotherapy/methods , Transplantation, Heterologous , Ultrasonic Therapy/methods , Yttrium Radioisotopes/administration & dosage , Yttrium Radioisotopes/immunology , Yttrium Radioisotopes/pharmacokinetics , Yttrium Radioisotopes/therapeutic use
17.
J Vasc Interv Radiol ; 23(7): 953-961.e2, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22609287

ABSTRACT

PURPOSE: Prosthetic arteriovenous or arterial-arterial bypass grafts can thrombose and be resistant to revascularization. A thrombosed bypass graft model was created to evaluate the potential therapeutic enhancement and safety profile of pulsed high-intensity-focused ultrasound (pHIFU) on pharmaceutical thrombolysis. MATERIALS AND METHODS: In swine, a right carotid-carotid expanded polytetrafluoroethylene bypass graft was surgically constructed, containing a 40% stenosis at its distal end to induce graft thrombosis. The revascularization procedure was performed 7 days after surgery. After model development and dose response experiments (n = 11), two cohorts were studied: pHIFU with tissue plasminogen activator (TPA; n = 4) and sham pHIFU with TPA (n = 3). The experiments were identical in both groups except no energy was delivered in the sham pHIFU group. Serial angiograms were obtained in all cases. The area of graft opacified by contrast medium on angiograms was quantified with digital image processing software. A blinded reviewer calculated the change in the graft area opacified by contrast medium and expressed it as a percentage, representing percentage of thrombolysis. RESULTS: Combining pHIFU with 0.5 mg of TPA resulted in a 52% ± 4% increase in thrombolysis on angiograms obtained at 30 minutes, compared with a 9% ± 14% increase with sham pHIFU and 0.5 mg TPA (P = .003). Histopathologic examination demonstrated no differences between the groups. CONCLUSIONS: Thrombolysis of occluded bypass grafts was significantly increased when combining pHIFU and TPA versus sham pHIFU and TPA. These results suggest that application of pHIFU may augment thrombolysis with a reduced time and dose.


Subject(s)
Thrombosis/etiology , Thrombosis/therapy , Vascular Grafting/adverse effects , Animals , Combined Modality Therapy , High-Intensity Focused Ultrasound Ablation , Swine , Thrombolytic Therapy , Tissue Plasminogen Activator , Treatment Outcome
18.
Stem Cells ; 30(6): 1216-27, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22593018

ABSTRACT

Bone marrow stromal cells (BMSCs) have shown significant promise in the treatment of disease, but their therapeutic efficacy is often limited by inefficient homing of systemically administered cells, which results in low number of cells accumulating at sites of pathology. BMSC home to areas of inflammation where local expression of integrins and chemokine gradients is present. We demonstrated that nondestructive pulsed focused ultrasound (pFUS) exposures that emphasize the mechanical effects of ultrasound-tissue interactions induced local and transient elevations of chemoattractants (i.e., cytokines, integrins, and growth factors) in the murine kidney. pFUS-induced upregulation of cytokines occurred through approximately 1 day post-treatment and returned to contralateral kidney levels by day 3. This window of significant increases in cytokine expression was accompanied by local increases of other trophic factors and integrins that have been shown to promote BMSC homing. When BMSCs were intravenously administered following pFUS treatment to a single kidney, enhanced homing, permeability, and retention of BMSC was observed in the treated kidney versus the contralateral kidney. Histological analysis revealed up to eight times more BMSC in the peritubular regions of the treated kidneys on days 1 and 3 post-treatment. Furthermore, cytokine levels in pFUS-treated kidneys following BMSC administration were found to be similar to controls, suggesting modulation of cytokine levels by BMSC. pFUS could potentially improve cell-based therapies as a noninvasive modality to target homing by establishing local chemoattractant gradients and increasing expression of integrins to enhance tropism of cells toward treated tissues.


Subject(s)
Bone Marrow Cells/cytology , Bone Marrow Cells/diagnostic imaging , Bone Marrow Transplantation/methods , Kidney/cytology , Kidney/diagnostic imaging , Stromal Cells/transplantation , Ultrasonics/methods , Animals , Bone Marrow Cells/metabolism , Bone Marrow Transplantation/diagnostic imaging , Cell Culture Techniques , Cytokines/metabolism , Female , Humans , Immunohistochemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/diagnostic imaging , Mice , Mice, Inbred BALB C , Mice, Nude , Stromal Cells/cytology , Ultrasonography
19.
J Control Release ; 158(3): 487-94, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22210162

ABSTRACT

Clinical-grade doxorubicin encapsulated low temperature sensitive liposomes (LTSLs) were combined with a clinical magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) platform to investigate in vivo image-guided drug delivery. Plasma pharmacokinetics were determined in 3 rabbits. Fifteen rabbits with Vx2 tumors within superficial thigh muscle were randomly assigned into three treatment groups: 1) free doxorubicin, 2) LTSL and 3) LTSL + MR-HIFU. For the LTSL + MR-HIFU group, mild hyperthermia (40-41 °C) was applied to the tumors using an MR-HIFU system. Image-guided non-invasive hyperthermia was applied for a total of 30 min, completed within 1h after LTSL infusion. High-pressure liquid chromatography (HPLC) analysis of the harvested tumor and organ/tissue homogenates was performed to determine doxorubicin concentration. Fluorescence microscopy was performed to determine doxorubicin spatial distribution in the tumors. Sonication of Vx2 tumors resulted in accurate (mean = 40.5 ± 0.1 °C) and spatially homogenous (SD = 1.0 °C) temperature control in the target region. LTSL + MR-HIFU resulted in significantly higher tumor doxorubicin concentrations (7.6- and 3.4-fold greater compared to free doxorubicin and LTSL respectively, p<0.05, Newman-Keuls). This improved tumor concentration was achieved despite heating <25% of the tumor volume. Free doxorubicin and LTSL treatments appeared to deliver more drug in the tumor periphery as compared to the tumor core. In contrast, LTSL + MR-HIFU treatment suggested an improved distribution with doxorubicin found in both the tumor periphery and core. Doxorubicin bio-distribution in non-tumor organs/tissues was fairly similar between treatment groups. This technique has potential for clinical translation as an image-guided method to deliver drug to a solid tumor.


Subject(s)
Doxorubicin/administration & dosage , High-Intensity Focused Ultrasound Ablation , Neoplasms/metabolism , Animals , Doxorubicin/blood , Doxorubicin/pharmacokinetics , Drug Delivery Systems , Female , Liposomes , Magnetic Resonance Spectroscopy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Rabbits , Temperature , Tissue Distribution , Ultrasonography
20.
PLoS One ; 6(9): e24730, 2011.
Article in English | MEDLINE | ID: mdl-21931834

ABSTRACT

Continuous focused ultrasound (cFUS) has been widely used for thermal ablation of tissues, relying on continuous exposures to generate temperatures necessary to induce coagulative necrosis. Pulsed FUS (pFUS) employs non-continuous exposures that lower the rate of energy deposition and allow cooling to occur between pulses, thereby minimizing thermal effects and emphasizing effects created by non-thermal mechanisms of FUS (i.e., acoustic radiation forces and acoustic cavitation). pFUS has shown promise for a variety of applications including drug and nanoparticle delivery; however, little is understood about the effects these exposures have on tissue, especially with regard to cellular pro-homing factors (growth factors, cytokines, and cell adhesion molecules). We examined changes in murine hamstring muscle following pFUS or cFUS and demonstrate that pFUS, unlike cFUS, has little effect on the histological integrity of muscle and does not induce cell death. Infiltration of macrophages was observed 3 and 8 days following pFUS or cFUS exposures. pFUS increased expression of several cytokines (e.g., IL-1α, IL-1ß, TNFα, INFγ, MIP-1α, MCP-1, and GMCSF) creating a local cytokine gradient on days 0 and 1 post-pFUS that returns to baseline levels by day 3 post-pFUS. pFUS exposures induced upregulation of other signaling molecules (e.g., VEGF, FGF, PlGF, HGF, and SDF-1α) and cell adhesion molecules (e.g., ICAM-1 and VCAM-1) on muscle vasculature. The observed molecular changes in muscle following pFUS may be utilized to target cellular therapies by increasing homing to areas of pathology.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Animals , Apoptosis/physiology , Cell Adhesion Molecules/metabolism , Chemokine CCL3/metabolism , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Intercellular Adhesion Molecule-1/metabolism , Interleukin-1/metabolism , Interleukin-1beta/metabolism , Macrophages , Magnetic Resonance Imaging , Mice , Muscle, Skeletal/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...