Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
FEBS Lett ; 597(23): 2879-2896, 2023 12.
Article in English | MEDLINE | ID: mdl-37884438

ABSTRACT

The origins of biopolymers pose fascinating questions in prebiotic chemistry. The marvelous assembly proficiencies of biopolymers suggest they are winners of a competitive evolutionary process. Sophisticated molecular assembly is ubiquitous in life where it is often emergent upon polymerization. We focus on the influence of molecular assembly on hydrolysis rates in aqueous media and suggest that assembly was crucial for biopolymer selection. In this model, incremental enrichment of some molecular species during chemical evolution was partially driven by the interplay of kinetics of synthesis and hydrolysis. We document a general attenuation of hydrolysis by assembly (i.e., recalcitrance) for all universal biopolymers and highlight the likely role of assembly in the survival of the 'fittest' molecules during chemical evolution.


Subject(s)
Biological Evolution , Evolution, Chemical , Hydrolysis , Biopolymers
2.
Nucleic Acids Res ; 51(8): 3529-3539, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36987860

ABSTRACT

Magnesium, the most abundant divalent cation in cells, catalyzes RNA cleavage but also promotes RNA folding. Because folding can protect RNA from cleavage, we predicted a 'Goldilocks landscape', with local maximum in RNA lifetime at Mg2+ concentrations required for folding. Here, we use simulation and experiment to discover an innate and sophisticated mechanism of control of RNA lifetime. By simulation we characterized RNA Goldilocks landscapes and their dependence on cleavage and folding parameters. Experiments with yeast tRNAPhe and the Tetrahymena ribozyme P4-P6 domain show that structured RNAs can inhabit Goldilocks peaks. The Goldilocks peaks are tunable by differences in folded and unfolded cleavage rate constants, Mg2+ binding cooperativity, and Mg2+ affinity. Different folding and cleavage parameters produce Goldilocks landscapes with a variety of features. Goldilocks behavior allows ultrafine control of RNA chemical lifetime, whereas non-folding RNAs do not display Goldilocks peaks of protection. In sum, the effects of Mg2+ on RNA persistence are expected to be pleomorphic, both protecting and degrading RNA. In evolutionary context, Goldilocks behavior may have been a selectable trait of RNA in an early Earth environment containing Mg2+ and other metals.


Subject(s)
RNA, Catalytic , RNA , RNA/chemistry , Magnesium/chemistry , Base Sequence , Nucleic Acid Conformation , Kinetics , RNA, Catalytic/chemistry
3.
Glycoconj J ; 39(5): 579-586, 2022 10.
Article in English | MEDLINE | ID: mdl-36001187

ABSTRACT

The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.


Subject(s)
Neoplasms , Polysaccharides , Glycosylation , Humans , Polysaccharides/metabolism
4.
JACS Au ; 2(6): 1395-1404, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35783166

ABSTRACT

The high kinetic barrier to amide bond formation has historically placed narrow constraints on its utility in reversible chemistry applications. Slow kinetics has limited the use of amides for the generation of diverse combinatorial libraries and selection of target molecules. Current strategies for peptide-based dynamic chemistries require the use of nonpolar co-solvents or catalysts or the incorporation of functional groups that facilitate dynamic chemistry between peptides. In light of these limitations, we explored the use of depsipeptides: biorelevant copolymers of amino and hydroxy acids that would circumvent the challenges associated with dynamic peptide chemistry. Here, we describe a model system of N-(α-hydroxyacyl)-amino acid building blocks that reversibly polymerize to form depsipeptides when subjected to two-step evaporation-rehydration cycling under moderate conditions. The hydroxyl groups of these units allow for dynamic ester chemistry between short peptide segments through unmodified carboxyl termini. Selective recycling of building blocks is achieved by exploiting the differential hydrolytic lifetimes of depsipeptide amide and ester bonds, which we show are controllable by adjusting the solution pH, temperature, and time as well as the building blocks' side chains. We demonstrate that the polymerization and breakdown of the depsipeptides are facilitated by cyclic morpholinedione intermediates, and further show how structural properties dictate half-lives and product oligomer distributions using multifunctional building blocks. These results establish a cyclic mode of ester-based reversible depsipeptide formation that temporally separates the polymerization and depolymerization steps for the building blocks and may have implications for prebiotic polymer chemical evolution.

5.
Nat Commun ; 13(1): 2569, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35562173

ABSTRACT

It is widely assumed that the condensation of building blocks into oligomers and polymers was important in the origins of life. High activation energies, unfavorable thermodynamics and side reactions are bottlenecks for abiotic peptide formation. All abiotic reactions reported thus far for peptide bond formation via thioester intermediates have relied on high energy molecules, which usually suffer from short half-life in aqueous conditions and therefore require constant replenishment. Here we report plausible prebiotic reactions of mercaptoacids with amino acids that result in the formation of thiodepsipeptides, which contain both peptide and thioester bonds. Thiodepsipeptide formation was achieved under a wide range of pH and temperature by simply drying and heating mercaptoacids with amino acids. Our results offer a robust one-pot prebiotically-plausible pathway for proto-peptide formation. These results support the hypothesis that thiodepsipeptides and thiol-terminated peptides formed readily on prebiotic Earth and were possible contributors to early chemical evolution.


Subject(s)
Origin of Life , Amino Acids , Esters , Evolution, Chemical , Peptides/chemistry
6.
J Mol Evol ; 90(2): 166-175, 2022 04.
Article in English | MEDLINE | ID: mdl-35246710

ABSTRACT

Evolution works by adaptation and exaptation. At an organismal level, exaptation and adaptation are seen in the formation of organelles and the advent of multicellularity. At the sub-organismal level, molecular systems such as proteins and RNAs readily undergo adaptation and exaptation. Here we suggest that the concepts of adaptation and exaptation are universal, synergistic, and recursive and apply to small molecules such as metabolites, cofactors, and the building blocks of extant polymers. For example, adenosine has been extensively adapted and exapted throughout biological evolution. Chemical variants of adenosine that are products of adaptation include 2' deoxyadenosine in DNA and a wide array of modified forms in mRNAs, tRNAs, rRNAs, and viral RNAs. Adenosine and its variants have been extensively exapted for various functions, including informational polymers (RNA, DNA), energy storage (ATP), metabolism (e.g., coenzyme A), and signaling (cyclic AMP). According to Gould, Vrba, and Darwin, exaptation imposes a general constraint on interpretation of history and origins; because of exaptation, extant function should not be used to explain evolutionary history. While this notion is accepted in evolutionary biology, it can also guide the study of the chemical origins of life. We propose that (i) evolutionary theory is broadly applicable from the dawn of life to the present time from molecules to organisms, (ii) exaptation and adaptation were important and simultaneous processes, and (iii) robust origin of life models can be constructed without conflating extant utility with historical basis of origins.


Subject(s)
Adaptation, Physiological , Feathers , Acclimatization , Adaptation, Physiological/genetics , Animals , Biological Evolution
7.
Life (Basel) ; 12(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35207553

ABSTRACT

The origin of biopolymers is a central question in origins of life research. In extant life, proteins are coded linear polymers made of a fixed set of twenty alpha-L-amino acids. It is likely that the prebiotic forerunners of proteins, or protopeptides, were more heterogenous polymers with a greater diversity of building blocks and linkage stereochemistry. To investigate a possible chemical selection for alpha versus beta amino acids in abiotic polymerization reactions, we subjected mixtures of alpha and beta hydroxy and amino acids to single-step dry-down or wet-dry cycling conditions. The resulting model protopeptide mixtures were analyzed by a variety of analytical techniques, including mass spectrometry and NMR spectroscopy. We observed that amino acids typically exhibited a higher extent of polymerization in reactions that also contained alpha hydroxy acids over beta hydroxy acids, whereas the extent of polymerization by beta amino acids was higher compared to their alpha amino acid analogs. Our results suggest that a variety of heterogenous protopeptide backbones existed during the prebiotic epoch, and that selection towards alpha backbones occurred later as a result of polymer evolution.

8.
J Mol Evol ; 89(1-2): 2-11, 2021 02.
Article in English | MEDLINE | ID: mdl-33427903

ABSTRACT

Water, the most abundant compound on the surface of the Earth and probably in the universe, is the medium of biology, but is much more than that. Water is the most frequent actor in the chemistry of metabolism. Our quantitation here reveals that water accounts for 99.4% of metabolites in Escherichia coli by molar concentration. Between a third and a half of known biochemical reactions involve consumption or production of water. We calculated the chemical flux of water and observed that in the life of a cell, a given water molecule frequently and repeatedly serves as a reaction substrate, intermediate, cofactor, and product. Our results show that as an E. coli cell replicates in the presence of molecular oxygen, an average in vivo water molecule is chemically transformed or is mechanistically involved in catalysis ~ 3.7 times. We conclude that, for biological water, there is no distinction between medium and chemical participant. Chemical transformations of water provide a basis for understanding not only extant biochemistry, but the origins of life. Because the chemistry of water dominates metabolism and also drives biological synthesis and degradation, it seems likely that metabolism co-evolved with biopolymers, which helps to reconcile polymer-first versus metabolism-first theories for the origins of life.


Subject(s)
Escherichia coli , Water , Catalysis , Escherichia coli/genetics , Humans , Organic Chemicals
9.
RSC Adv ; 11(6): 3534-3538, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-35424306

ABSTRACT

Biochemistry exhibits an intense dependence on metals. Here we show that during dry-down reactions, zinc and a few other transition metals increase the yield of long histidine-containing depsipeptides, which contain both ester and amide linkages. Our results suggest that interactions of proto-peptides with metal ions influenced early chemical evolution.

10.
Cell Mol Life Sci ; 78(5): 2231-2245, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32926180

ABSTRACT

Amyloid assemblies of Tau are associated with Alzheimer's disease (AD). In AD Tau undergoes several abnormal post-translational modifications, including hyperphosphorylation and glycosylation, which impact disease progression. N-glycosylated Tau was reported to be found in AD brain tissues but not in healthy counterparts. This is surprising since Tau is a cytosolic protein whereas N-glycosylation occurs in the ER-Golgi. Previous in vitro studies indicated that N-glycosylation of Tau facilitated its phosphorylation and contributed to maintenance of its Paired Helical Filament structure. However, the specific Tau residue(s) that undergo N-glycosylation and their effect on Tau-engendered pathology are unknown. High-performance liquid chromatography and mass spectrometry (LC-MS) analysis indicated that both N359 and N410 were N-glycosylated in wild-type (WT) human Tau (hTau) expressed in human SH-SY5Y cells. Asparagine to glutamine mutants, which cannot undergo N-glycosylation, at each of three putative N-glycosylation sites in hTau (N167Q, N359Q, and N410Q) were generated and expressed in SH-SY5Y cells and in transgenic Drosophila. The mutants modulated the levels of hTau phosphorylation in a site-dependent manner in both cell and fly models. Additionally, N359Q ameliorated, whereas N410Q exacerbated various aspects of hTau-engendered neurodegeneration in transgenic flies.


Subject(s)
Alzheimer Disease/genetics , Mutation, Missense , Neurodegenerative Diseases/genetics , tau Proteins/genetics , Alzheimer Disease/metabolism , Animals , Animals, Genetically Modified , Binding Sites/genetics , Cell Line, Tumor , Disease Models, Animal , Drosophila/genetics , Drosophila/metabolism , Glycosylation , Humans , Longevity/genetics , Neurodegenerative Diseases/metabolism , Phosphorylation , tau Proteins/metabolism
11.
Commun Biol ; 3(1): 484, 2020 09 02.
Article in English | MEDLINE | ID: mdl-32879439

ABSTRACT

Self-assembly of proteins into amyloid fibrils is a hallmark of various diseases, including Alzheimer's disease (AD) and Type-2 diabetes Mellitus (T2DM). Aggregation of specific peptides, like Aß42 in AD and hIAPP in T2DM, causes cellular dysfunction resulting in the respective pathology. While these amyloidogenic proteins lack sequence homology, they all contain aromatic amino acids in their hydrophobic core that play a major role in their self-assembly. Targeting these aromatic residues by small molecules may be an attractive approach for inhibiting amyloid aggregation. Here, various biochemical and biophysical techniques revealed that a panel of tryptophan-galactosylamine conjugates significantly inhibit fibril formation of Aß42 and hIAPP, and disassemble their pre-formed fibrils in a dose-dependent manner. They are also not toxic to mammalian cells and can reduce the cytotoxicity induced by Aß42 and hIAPP aggregates. These tryptophan-galactosylamine conjugates can therefore serve as a scaffold for the development of therapeutics towards AD and T2DM.


Subject(s)
Amyloid beta-Peptides/toxicity , Amyloid/metabolism , Galactosamine/metabolism , Islet Amyloid Polypeptide/toxicity , Peptide Fragments/toxicity , Protein Aggregates , Tryptophan/metabolism , Amino Acid Sequence , Amyloid/ultrastructure , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/ultrastructure , Cell Death/drug effects , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/ultrastructure , Peptide Fragments/chemistry , Peptide Fragments/ultrastructure , Protein Aggregates/drug effects
12.
Nucleic Acids Res ; 48(15): 8663-8674, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32663277

ABSTRACT

Divalent metal cations are essential to the structure and function of the ribosome. Previous characterizations of the ribosome performed under standard laboratory conditions have implicated Mg2+ as a primary mediator of ribosomal structure and function. Possible contributions of Fe2+ as a ribosomal cofactor have been largely overlooked, despite the ribosome's early evolution in a high Fe2+ environment, and the continued use of Fe2+ by obligate anaerobes inhabiting high Fe2+ niches. Here, we show that (i) Fe2+ cleaves RNA by in-line cleavage, a non-oxidative mechanism that has not previously been shown experimentally for this metal, (ii) the first-order in-line rate constant with respect to divalent cations is >200 times greater with Fe2+ than with Mg2+, (iii) functional ribosomes are associated with Fe2+ after purification from cells grown under low O2 and high Fe2+ and (iv) a small fraction of Fe2+ that is associated with the ribosome is not exchangeable with surrounding divalent cations, presumably because those ions are tightly coordinated by rRNA and deeply buried in the ribosome. In total, these results expand the ancient role of iron in biochemistry and highlight a possible new mechanism of iron toxicity.


Subject(s)
Cations, Divalent/metabolism , Iron/metabolism , RNA Cleavage/genetics , Ribosomes/genetics , Binding Sites , Cations, Divalent/chemistry , Iron/chemistry , Magnesium/chemistry , Magnesium/metabolism , Metals/chemistry , Metals/metabolism , Oxidation-Reduction/drug effects , Ribosomes/chemistry
13.
Nat Commun ; 11(1): 3137, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561731

ABSTRACT

The close synergy between peptides and nucleic acids in current biology is suggestive of a functional co-evolution between the two polymers. Here we show that cationic proto-peptides (depsipeptides and polyesters), either produced as mixtures from plausibly prebiotic dry-down reactions or synthetically prepared in pure form, can engage in direct interactions with RNA resulting in mutual stabilization. Cationic proto-peptides significantly increase the thermal stability of folded RNA structures. In turn, RNA increases the lifetime of a depsipeptide by >30-fold. Proto-peptides containing the proteinaceous amino acids Lys, Arg, or His adjacent to backbone ester bonds generally promote RNA duplex thermal stability to a greater magnitude than do analogous sequences containing non-proteinaceous residues. Our findings support a model in which tightly-intertwined biological dependencies of RNA and protein reflect a long co-evolutionary history that began with rudimentary, mutually-stabilizing interactions at early stages of polypeptide and nucleic acid co-existence.


Subject(s)
Evolution, Molecular , Peptides/metabolism , Protein Folding , RNA Stability , RNA/metabolism , Amino Acid Sequence , Aminobutyrates/chemistry , Aminobutyrates/metabolism , Cations/chemistry , Cations/metabolism , Circular Dichroism , Hydrolysis , Nuclear Magnetic Resonance, Biomolecular , Origin of Life , Ornithine/chemistry , Ornithine/metabolism , Peptides/chemistry , Protein Stability , RNA/chemistry , beta-Alanine/analogs & derivatives , beta-Alanine/chemistry , beta-Alanine/metabolism
14.
Chem Rev ; 120(11): 4848-4878, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32374986

ABSTRACT

The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable ß-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form ß-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.


Subject(s)
Evolution, Molecular , Ribosomes/metabolism , Models, Molecular , Protein Conformation, beta-Strand , Protein Folding , Proteins/chemistry , Proteins/metabolism , Ribosomes/chemistry , Thermodynamics
15.
Chem Rev ; 120(11): 4707-4765, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32101414

ABSTRACT

The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.


Subject(s)
Evolution, Chemical , Origin of Life , Peptides/chemistry , Amino Acids/chemistry , Carbohydrates/chemistry , Lipids/chemistry
16.
Phys Chem Chem Phys ; 22(1): 107-113, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31807746

ABSTRACT

The non-enzymatic cleavage rates of amide bonds located in peptides in aqueous solution is pH-dependent and involves two distinct mechanisms: direct hydrolysis (herein termed "scission") and intramolecular aminolysis by the N-terminal amine (herein termed "backbiting"). While amide bond cleavage has been previously characterized using a variety of peptides, no systematic study has yet been reported addressing the effect of the pH on the interplay between the two amide bond cleavage pathways. In this study, the cleavage rates of the glycine dimer (GG), the glycine trimer (GGG), and the cyclic dimer (cGG), as well as the alanine trimer (AAA), were measured at pH 3, 5, 7, and 10 at 95 °C employing quantification based on 1H NMR. The distinct rate constants for scission and backbiting processes were obtained by solving the differential rate equations associated with the proposed kinetic model. Generalizations concerning the relative importance of the various amide bond cleavage pathways at pH 3, 5, 7, and 10 are presented. In particular, scission dominates at pH 10, while backbiting dominates at neutral pH. At the acidic pH of 3, both backbiting and scission are significant. The model of the reaction network, used in this work, enables the quantification of these multiple competing mechanisms and can be applied to longer peptides and to similar types of reaction networks.


Subject(s)
Hydrogen-Ion Concentration , Peptides/chemistry , Alanine/chemistry , Amides/chemistry , Amines/chemistry , Glycine/chemistry , Hydrolysis , Kinetics , Methionine/chemistry , Protein Stability , Thermodynamics
17.
Proc Natl Acad Sci U S A ; 116(33): 16338-16346, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31358633

ABSTRACT

Numerous long-standing questions in origins-of-life research center on the history of biopolymers. For example, how and why did nature select the polypeptide backbone and proteinaceous side chains? Depsipeptides, containing both ester and amide linkages, have been proposed as ancestors of polypeptides. In this paper, we investigate cationic depsipeptides that form under mild dry-down reactions. We compare the oligomerization of various cationic amino acids, including the cationic proteinaceous amino acids (lysine, Lys; arginine, Arg; and histidine, His), along with nonproteinaceous analogs of Lys harboring fewer methylene groups in their side chains. These analogs, which have been discussed as potential prebiotic alternatives to Lys, are ornithine, 2,4-diaminobutyric acid, and 2,3-diaminopropionic acid (Orn, Dab, and Dpr). We observe that the proteinaceous amino acids condense more extensively than these nonproteinaceous amino acids. Orn and Dab readily cyclize into lactams, while Dab and Dpr condense less efficiently. Furthermore, the proteinaceous amino acids exhibit more selective oligomerization through their α-amines relative to their side-chain groups. This selectivity results in predominantly linear depsipeptides in which the amino acids are α-amine-linked, analogous to today's proteins. These results suggest a chemical basis for the selection of Lys, Arg, and His over other cationic amino acids for incorporation into proto-proteins on the early Earth. Given that electrostatics are key elements of protein-RNA and protein-DNA interactions in extant life, we hypothesize that cationic side chains incorporated into proto-peptides, as reported in this study, served in a variety of functions with ancestral nucleic acid polymers in the early stages of life.


Subject(s)
Amino Acids/chemistry , Origin of Life , Peptides/chemistry , Proteins/chemistry , Amino Acids/genetics , Aminobutyrates/chemistry , Cations/chemistry , DNA-Binding Proteins/chemistry , Depsipeptides/chemistry , Depsipeptides/genetics , Peptides/genetics , Proteins/genetics , RNA-Binding Proteins/chemistry , Static Electricity , beta-Alanine/analogs & derivatives , beta-Alanine/chemistry
18.
Sci Rep ; 9(1): 2254, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783169

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder and has no disease-modifying treatment yet. The hallmarks of AD are two amyloidogenic proteins: tau and amyloid ß (Aß). Tau undergoes several posttranslational modifications, including N-glycosylation. Tau was reported to be N-glycosylated in AD brains, but not in healthy counterparts, which may affect AD etiology. Here, we aimed to examine the effect of N-glycosylation on aggregation propensity of tau. To that end, a novel SH-SY5Y cell-based model was generated in which recombinant human tau (htau) is forced to be secreted from the cells. Secreted htau was found to localize in the secretory pathway compartments and to undergo N-glycosylation. Following N-glycan cleavage of the secreted htau, various biophysical results collectively indicated that the untreated N-glycosylated secreted htau is markedly less aggregative, contains thinner and shorter fibrils, as compared to treated de-glycosylated secreted htau. This finding shows that N-glycans attached to htau may affect its aggregation. This could help to better understand the effect of N-glycosylated htau on AD progression.


Subject(s)
Alzheimer Disease/metabolism , Models, Biological , Protein Aggregation, Pathological/metabolism , Protein Processing, Post-Translational , tau Proteins/biosynthesis , Cell Line, Tumor , Glycosylation , Humans
19.
Chemistry ; 24(53): 14039-14043, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30144161

ABSTRACT

Protein phosphorylation and O-GlcNAcylation are very common nucleoplasmic post-translational modifications. Mono-addition of either the phosphate or the O-GlcNAc group were shown to inhibit the self-aggregation of amyloidogenic proteins and peptides, which is the hallmark of various protein misfolding diseases. However, their comparable effect upon co-incubation with a native non-modified amyloid scaffold has not been reported. O-linked glycans and phosphate variants of the tau protein-derived VQIVYK hexapeptide motif were generated as a simplified amyloid scaffold model and demonstrate that, while self-aggregation can be attenuated by either a single glycan or a phosphate unit, only co-incubation with the O-GlcNAc variant inhibits aggregation of the native peptide. These results shed light on the role of post-translational modifications in protein aggregation and suggest a novel therapeutic approach to protein misfolding diseases.

20.
Sci Adv ; 3(9): e1601576, 2017 09.
Article in English | MEDLINE | ID: mdl-28929132

ABSTRACT

Deviations from the normal nucleoplasmic protein O-GlcNAcylation, as well as from normal protein sialylation and N-glycosylation in the secretory pathway, have been reported in Alzheimer's disease (AD). However, the interplay between the cytoplasmic protein O-GlcNAcylation and the secretory N-/O-glycosylation in AD has not been described. We present a comprehensive analysis of the N-, O-, and O-GlcNAc-glycomes in AD-affected brain regions as well as in AD patient serum. We detected marked differences in levels of glycan involved in both protein O-GlcNAcylation and N-/O-glycosylation between patients and healthy individuals and revealed brain region-specific glycosylation-related pathology in patients. These alterations are not general for other neurodegenerative conditions, such as frontotemporal dementia and corticobasal degeneration. The alterations in the AD glycome in the serum could potentially lead to novel glyco-based biomarkers for AD progression. Strikingly, negative interrelationship was found between the pathways of protein O-GlcNAcylation and N-/O-glycosylation, suggesting a novel intracellular cross-talk.


Subject(s)
Alzheimer Disease/metabolism , Protein Processing, Post-Translational , Signal Transduction , Aged , Aged, 80 and over , Alzheimer Disease/blood , Alzheimer Disease/pathology , Biomarkers , Brain/metabolism , Brain/pathology , Case-Control Studies , Female , Glycosylation , Humans , Male , Middle Aged , Proteome , Proteomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...