Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Proteomics ; 18(6): 1255-1268, 2019 06.
Article in English | MEDLINE | ID: mdl-31154438

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis to most patients. Immunotherapy of GBM is a potentially beneficial treatment option, whose optimal implementation may depend on familiarity with tumor specific antigens, presented as HLA peptides by the GBM cells. Further, early detection of GBM, such as by a routine blood test, may improve survival, even with the current treatment modalities. This study includes large-scale analyses of the HLA peptidome (immunopeptidome) of the plasma-soluble HLA molecules (sHLA) of 142 plasma samples, and the membranal HLA of GBM tumors of 10 of these patients' tumor samples. Tumor samples were fresh-frozen immediately after surgery and the plasma samples were collected before, and at multiple visits after surgery. In total, this HLA peptidome analysis involved 52 different HLA allotypes and resulted in the identification of more than 35,000 different HLA peptides. Strong correlations were observed in the signal intensities and in the repertoires of identified peptides between the tumors and plasma-soluble HLA peptidomes of the individual patients, whereas low correlations were observed between these HLA peptidomes and the tumors' proteomes. HLA peptides derived from Cancer/Testis Antigens (CTAs) were selected based on their presence among the HLA peptidomes of the patients and absence of expression of their source genes from any healthy and essential human tissues, except from immune-privileged sites. Additionally, peptides were selected as potential biomarkers if their levels in the plasma-sHLA peptidome were significantly reduced after the removal of tumor mass. The CTAs identified among the analyzed HLA peptidomes provide new opportunities for personalized immunotherapy and for early diagnosis of GBM.


Subject(s)
Antigens, Neoplasm/blood , Brain Neoplasms/blood , Glioblastoma/blood , Histocompatibility Antigens Class I/blood , Peptides/blood , Proteome/metabolism , Alleles , Biomarkers, Tumor/blood , Brain Neoplasms/surgery , Glioblastoma/surgery , Humans
4.
Nature ; 565(7738): 240-245, 2019 01.
Article in English | MEDLINE | ID: mdl-30568303

ABSTRACT

Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30-50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigens-that is, both unmutated antigens and neoepitopes-may offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-L-lysine carboxymethylcellulose) and granulocyte-macrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.


Subject(s)
Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Glioblastoma/diagnosis , Glioblastoma/therapy , Precision Medicine/methods , Adult , Aged , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Female , Glioblastoma/immunology , HLA-A Antigens/immunology , Humans , Immunologic Memory/immunology , Male , Middle Aged , T-Lymphocytes, Helper-Inducer/immunology , Treatment Outcome
5.
Mol Cell Proteomics ; 17(11): 2132-2145, 2018 11.
Article in English | MEDLINE | ID: mdl-30072578

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis to most patients. Immunotherapy of GBM is a potentially beneficial treatment option, whose optimal implementation may depend on familiarity with tumor specific antigens, presented as HLA peptides by the GBM cells. Furthermore, early detection of GBM, such as by a routine blood test, may improve survival, even with the current treatment modalities. This study includes large-scale analyses of the HLA peptidome (immunopeptidome) of the plasma-soluble HLA molecules (sHLA) of 142 plasma samples, and the membranal HLA of GBM tumors of 10 of these patients' tumor samples. Tumor samples were fresh-frozen immediately after surgery and the plasma samples were collected before, and at multiple visits after surgery. In total, this HLA peptidome analysis involved 52 different HLA allotypes and resulted in the identification of more than 35,000 different HLA peptides. Strong correlations were observed in the signal intensities and in the repertoires of identified peptides between the tumors and plasma-soluble HLA peptidomes of the individual patients, whereas low correlations were observed between these HLA peptidomes and the tumors' proteomes. HLA peptides derived from Cancer/Testis Antigens (CTAs) were selected based on their presence among the HLA peptidomes of the patients and absence of expression of their source genes from any healthy and essential human tissues, except from immune-privileged sites. Additionally, peptides were selected as potential biomarkers if their levels in the plasma-sHLA peptidome were significantly reduced after the removal of tumor mass. The CTAs identified among the analyzed HLA peptidomes provide new opportunities for personalized immunotherapy and for early diagnosis of GBM.


Subject(s)
Antigens, Neoplasm/blood , Glioblastoma/blood , HLA Antigens/metabolism , Peptides/metabolism , Proteome/metabolism , Alleles , Amino Acid Sequence , Antigens, Neoplasm/metabolism , Biomarkers, Tumor/blood , Cell Membrane/metabolism , Glioblastoma/surgery , Humans , Peptides/blood , Peptides/chemistry , Solubility
6.
FASEB J ; 30(6): 2426-34, 2016 06.
Article in English | MEDLINE | ID: mdl-26979086

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is complicated by infectious exacerbations with acute worsening of respiratory symptoms. Coinfections of bacterial and viral pathogens are associated with more severe exacerbations. Moraxella catarrhalis is one of the most frequent lower respiratory tract pathogens detected in COPD. We therefore studied the impact of M. catarrhalis on the antiviral innate immune response that is mediated via TLR3 and p53. Molecular interactions between M. catarrhalis and normal human bronchial epithelial (NHBE) cells as well as Beas-2B cells were studied using flow cytometry, quantitative PCR analysis, chromatin immunoprecipitation, RNA interference, and ELISA. M. catarrhalis induces a significant down-regulation of TLR3 in human bronchial epithelial cells. In M. catarrhalis-infected cells, expression of p53 was decreased. We detected a reduced binding of p53 to the tlr3 promoter, resulting in reduced TLR3 gene transcription. M. catarrhalis diminished the TLR3-dependent secretion of IFN-ß, IFN-λ, and chemokine (C-X-C motif) ligand 8. In addition in M. catarrhalis infected cells, expression of rhinovirus type 1A RNA was increased compared with uninfected cells. M. catarrhalis reduces antiviral defense functions of bronchial epithelial cells, which may increase susceptibility to viral infections.-Heinrich, A., Haarmann, H., Zahradnik, S., Frenzel, K., Schreiber, F., Klassert, T. E., Heyl, K. A., Endres, A.-S., Schmidtke, M., Hofmann, J., Slevogt, H. Moraxella catarrhalis decreases antiviral innate immune responses by down-regulation of TLR3 via inhibition of p53 in human bronchial epithelial cells.


Subject(s)
Epithelial Cells/immunology , Immunity, Innate , Moraxella catarrhalis/physiology , Rhinovirus/physiology , Toll-Like Receptor 3/metabolism , Tumor Suppressor Protein p53/metabolism , Cell Line , Down-Regulation , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/virology , Humans , Inflammation/immunology , Inflammation/metabolism , RNA Interference , Toll-Like Receptor 3/genetics , Tumor Suppressor Protein p53/genetics
7.
Antimicrob Agents Chemother ; 54(8): 3225-32, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20547816

ABSTRACT

The aim of this study was to investigate the pharmacokinetics and safety of voriconazole after intravenous (i.v.) administration in immunocompromised children (2 to 11 years old) and adults (20 to 60 years old) who required treatment for the prevention or therapy of systemic fungal infections. Nine pediatric patients were treated with a dose of 7 mg/kg i.v. every 12 h for a period of 10 days. Three children and 12 adults received two loading doses of 6 mg/kg i.v. every 12 h, followed by a maintenance dose of 5 mg/kg (children) or 4 mg/kg (adults) twice a day during the entire study period. Trough voriconazole levels in blood over 10 days of therapy and regular voriconazole levels in blood for up to 12 h postdose on day 3 were examined. Wide intra- and interindividual variations in plasma voriconazole levels were noted in each dose group and were most pronounced in the children receiving the 7-mg/kg dose. Five (56%) of them frequently had trough voriconazole levels in plasma below 1 microg/ml or above 6 microg/ml. The recommended dose of 7 mg/kg i.v. in children provides exposure (area under the concentration-time curve) comparable to that observed in adults receiving 4 mg/kg i.v. The children had significantly higher C(max) values; other pharmacokinetic parameters were not significantly different from those of adults. Voriconazole exhibits nonlinear pharmacokinetics in the majority of children. Voriconazole therapy was safe and well tolerated in pediatric and adult patients. The European Medicines Agency-approved i.v. dose of 7 mg/kg can be recommended for children aged 2 to <12 years.


Subject(s)
Antifungal Agents/adverse effects , Antifungal Agents/pharmacokinetics , Immunocompromised Host , Mycoses/drug therapy , Pyrimidines/adverse effects , Pyrimidines/pharmacokinetics , Triazoles/adverse effects , Triazoles/pharmacokinetics , Adult , Antifungal Agents/administration & dosage , Area Under Curve , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Humans , Injections, Intravenous , Male , Middle Aged , Pyrimidines/administration & dosage , Treatment Outcome , Triazoles/administration & dosage , Voriconazole , Young Adult
8.
Diagn Microbiol Infect Dis ; 67(2): 172-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20466196

ABSTRACT

Hepatitis D virus (HDV) infection is an important etiologic agent of fulminant hepatitis and may aggravate the clinical course of chronic hepatitis B infection resulting in cirrhosis and liver failure. This report describes the establishment of a real-time reverse transcriptase polymerase chain reaction method that allows the quantitative detection of HDV-1 and HDV-3 with a sensitivity in a linear range of 2 x 10(3) to 10(8) copies/mL. Additionally, the new assay provides the opportunity to distinguish HDV-1 from HDV-3 by a subsequent melting curve analysis, an important option because these HDV types are highly associated with severe clinical outcome. The results of the melting curve analysis of 42 HDV sequences obtained in this study and the phylogenetic analysis based on 139 full-length sequences from GenBank were consistent and showed that all sequences described here cluster within the HDV-1 clade. Therefore, this assay is useful for monitoring of antiviral treatment and molecular epidemiologic studies of HDV distribution.


Subject(s)
Hepatitis D/diagnosis , Hepatitis Delta Virus/classification , Hepatitis Delta Virus/isolation & purification , Polymerase Chain Reaction/methods , Serum/virology , Transition Temperature , Virology/methods , Cluster Analysis , Hepatitis D/virology , Hepatitis Delta Virus/genetics , Humans , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Sensitivity and Specificity , Sequence Analysis, DNA , Sequence Homology
9.
Ther Drug Monit ; 32(2): 194-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20216120

ABSTRACT

To evaluate the reliability and practical use of saliva for therapeutic drug monitoring of the antifungal agent voriconazole in immunocompromised patients, a paired-sample study was conducted. Plasma and saliva trough levels were measured in seven children and nine adults who required treatment for the prevention or therapy of systemic fungal infections. The pediatric patients received a voriconazole dosage of 7 mg/kg intravenously twice a day. Adults were treated with two loading doses of 6 mg/kg intravenously followed by a maintenance dose of 4 mg/kg intravenously twice a day. Based on 104 paired plasma/saliva specimens, we found a significant correlation between the voriconazole concentrations in blood and saliva (r > 0.95). The median saliva/plasma voriconazole concentration ratio was 0.34 in children and 0.40 in adults. Intra- and interpatient variability in the saliva/plasma ratios were 22% and 23% in children and 16% and 24% in adults, respectively. Thirty-three percent of plasma trough levels were below 1.0 microg/mL or above 6.0 microg/mL and occurred in six pediatric and four adult patients. Monitoring of salivary concentrations proved to be a realistic alternative in patients when blood drawing is difficult. Especially in therapeutic drug monitoring, an easier sample collection being noninvasive and painless is more acceptable to patients, particularly children.


Subject(s)
Drug Monitoring , Immunocompromised Host/drug effects , Immunocompromised Host/physiology , Pyrimidines/therapeutic use , Saliva/chemistry , Saliva/metabolism , Triazoles/therapeutic use , Adult , Age Factors , Child , Child, Preschool , Drug Monitoring/methods , Female , Humans , Male , Middle Aged , Mycoses/metabolism , Mycoses/prevention & control , Voriconazole
SELECTION OF CITATIONS
SEARCH DETAIL
...