Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(7): 112756, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37418323

ABSTRACT

Bacterial cell-wall hydrolases must be tightly regulated during bacterial cell division to prevent aberrant cell lysis and to allow final separation of viable daughter cells. In a multidisciplinary work, we disclose the molecular dialogue between the cell-wall hydrolase LytB, wall teichoic acids, and the eukaryotic-like protein kinase StkP in Streptococcus pneumoniae. After characterizing the peptidoglycan recognition mode by the catalytic domain of LytB, we further demonstrate that LytB possesses a modular organization allowing the specific binding to wall teichoic acids and to the protein kinase StkP. Structural and cellular studies notably reveal that the temporal and spatial localization of LytB is governed by the interaction between specific modules of LytB and the final PASTA domain of StkP. Our data collectively provide a comprehensive understanding of how LytB performs final separation of daughter cells and highlights the regulatory role of eukaryotic-like kinases on lytic machineries in the last step of cell division in streptococci.


Subject(s)
Protein Serine-Threonine Kinases , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolism , Protein Serine-Threonine Kinases/metabolism , Teichoic Acids/metabolism , Bacterial Proteins/metabolism , Cell Division , Protein Kinases/metabolism , Hydrolases/metabolism , Cell Wall/metabolism
2.
J Enzyme Inhib Med Chem ; 38(1): 2121821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36650907

ABSTRACT

The mitochondrial voltage-dependent anion channel 1 (VDAC1) plays a central role in metabolism and apoptosis, which makes it a promising therapeutic target. Nevertheless, molecular mechanisms governing VDAC1 functioning remain unclear. Small-molecule ligands specifically interacting with the channel provide an attractive way of exploring its structure-function relationships and can possibly be used as founding stones for future drug-candidates. While around 30 VDAC1 ligands have been identified over the years, various techniques have been used by research teams, making a fair and direct comparison between compounds impossible. To tackle this issue, we performed ligand-binding assays on a representative set of seventeen known VDAC1 ligands using nano-differential scanning fluorimetry and microscale thermophoresis. While all the compounds have been confirmed as VDAC1 ligands by at least one method, combining both technologies lead to the selection of four molecules (cannabidiol, curcumin, DIDS and VBIT4) as chemical starting points for future design of VDAC1 selective ligands.


Subject(s)
Cannabidiol , Voltage-Dependent Anion Channel 1 , Voltage-Dependent Anion Channel 1/chemistry , Voltage-Dependent Anion Channel 1/metabolism , Mitochondria/metabolism , Apoptosis , Cannabidiol/metabolism
3.
Proc Natl Acad Sci U S A ; 119(30): e2202527119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858428

ABSTRACT

Despite an extensive theoretical and numerical background, the translocation ratchet mechanism, which is fundamental for the transmembrane transport of biomolecules, has never been experimentally reproduced at the nanoscale. Only the Sec61 and bacterial type IV pilus pores were experimentally shown to exhibit a translocation ratchet mechanism. Here we designed a synthetic translocation ratchet and quantified its efficiency as a nanopump. We measured the translocation frequency of DNA molecules through nanoporous membranes and showed that polycations at the trans side accelerated the translocation in a ratchet-like fashion. We investigated the ratchet efficiency according to geometrical and kinetic parameters and observed the ratchet to be only dependent on the size of the DNA molecule with a power law [Formula: see text]. A threshold length of 3 kbp was observed, below which the ratchet did not operate. We interpreted this threshold in a DNA looping model, which quantitatively explained our results.


Subject(s)
DNA , Nanopores , Biological Transport , DNA/metabolism , Fimbriae, Bacterial/metabolism , Kinetics
4.
PLoS Pathog ; 18(4): e1010458, 2022 04.
Article in English | MEDLINE | ID: mdl-35395062

ABSTRACT

Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.


Subject(s)
Antimicrobial Peptides , Drug Resistance, Bacterial , Gene Expression Regulation, Bacterial , Streptococcus pneumoniae , Antimicrobial Peptides/pharmacology , Bacteria/metabolism , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Escherichia coli/metabolism , Humans , Membrane Transport Proteins/metabolism , Peptides/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism
5.
mBio ; 11(5)2020 10 27.
Article in English | MEDLINE | ID: mdl-33109762

ABSTRACT

Control of peptidoglycan assembly is critical to maintain bacterial cell size and morphology. Penicillin-binding proteins (PBPs) are crucial enzymes for the polymerization of the glycan strand and/or their cross-linking via peptide branches. Over the last few years, it has become clear that PBP activity and localization can be regulated by specific cognate regulators. The first regulator of PBP activity in Gram-positive bacteria was discovered in the human pathogen Streptococcus pneumoniae This regulator, named CozE, controls the activity of the bifunctional PBP1a to promote cell elongation and achieve a proper cell morphology. In this work, we studied a previously undescribed CozE homolog in the pneumococcus, which we named CozEb. This protein displays the same membrane organization as CozE but is much more widely conserved among Streptococcaceae genomes. Interestingly, cozEb deletion results in cells that are smaller than their wild-type counterparts, which is the opposite effect of cozE deletion. Furthermore, double deletion of cozE and cozEb results in poor viability and exacerbated cell shape defects. Coimmunoprecipitation further showed that CozEb is part of the same complex as CozE and PBP1a. However, although we confirmed that CozE is required for septal localization of PBP1a, the absence of CozEb has no effect on PBP1a localization. Nevertheless, we found that the overexpression of CozEb can compensate for the absence of CozE in all our assays. Altogether, our results show that the interplay between PBP1a and the cell size regulators CozE and CozEb is required for the maintenance of pneumococcal cell size and shape.IMPORTANCE Penicillin-binding proteins (PBPs), the proteins catalyzing the last steps of peptidoglycan assembly, are critical for bacteria to maintain cell size, shape, and integrity. PBPs are consequently attractive targets for antibiotics. Resistance to antibiotics in Streptococcus pneumoniae (the pneumococcus) are often associated with mutations in the PBPs. In this work, we describe a new protein, CozEb, controlling the cell size of pneumococcus. CozEb is a highly conserved integral membrane protein that works together with other proteins to regulate PBPs and peptidoglycan synthesis. Deciphering the intricate mechanisms by which the pneumococcus controls peptidoglycan assembly might allow the design of innovative anti-infective strategies, for example, by resensitizing resistant strains to PBP-targeting antibiotics.


Subject(s)
Bacterial Proteins/genetics , Homeostasis , Membrane Proteins/genetics , Penicillin-Binding Proteins/genetics , Streptococcus pneumoniae/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Computational Biology , Membrane Proteins/metabolism , Microbial Sensitivity Tests , Mutation , Peptidoglycan/metabolism , Phenotype , Streptococcus pneumoniae/drug effects
6.
Front Microbiol ; 10: 1942, 2019.
Article in English | MEDLINE | ID: mdl-31551943

ABSTRACT

Protein phosphorylation is a key post-translational modification required for many cellular functions of the bacterial cell. Recently, we identified a new protein-kinase, named UbK, in Bacillus subtilis that belongs to a new family of protein-kinases widespread in bacteria. In this study, we analyze the function of UbK in Streptococcus pneumoniae. We show that UbK displays a tyrosine-kinase activity and autophosphorylates on a unique tyrosine in vivo. To get insights into its cellular role, we constructed a set of pneumococcal ubk mutants. Using conventional and electron microscopy, we show that the ubk deficient strain, as well as an ubk catalytic dead mutant, display both severe cell-growth and cell-morphology defects. The same defects are observed with a mutant mimicking permanent phosphorylation of UbK whereas they are not detected for a mutant mimicking defective autophosphorylation of UbK. Moreover, we find that UbK phosphorylation promotes its ability to hydrolyze ATP. These observations show that the hydrolysis of ATP by UbK serves not only for its autophosphorylation but also for a distinct purpose essential for the optimal cell growth and cell-morphogenesis of the pneumococcus. We thus propose a model in which the autophosphorylation/dephosphorylation of UbK regulates its cellular function through a negative feedback loop.

7.
Nat Microbiol ; 4(10): 1661-1670, 2019 10.
Article in English | MEDLINE | ID: mdl-31182798

ABSTRACT

Chromosome segregation in bacteria is poorly understood outside some prominent model strains1-5 and even less is known about how it is coordinated with other cellular processes. This is the case for the opportunistic human pathogen Streptococcus pneumoniae (the pneumococcus)6, which lacks the Min and the nucleoid occlusion systems7, and possesses only an incomplete chromosome partitioning Par(A)BS system, in which ParA is absent8. The bacterial tyrosine kinase9 CpsD, which is required for capsule production, was previously found to interfere with chromosome segregation10. Here, we identify a protein of unknown function that interacts with CpsD and drives chromosome segregation. RocS (Regulator of Chromosome Segregation) is a membrane-bound protein that interacts with both DNA and the chromosome partitioning protein ParB to properly segregate the origin of replication region to new daughter cells. In addition, we show that RocS interacts with the cell division protein FtsZ and hinders cell division. Altogether, this work reveals that RocS is the cornerstone of a nucleoid protection system ensuring proper chromosome segregation and cell division in coordination with the biogenesis of the protective capsular layer.


Subject(s)
Bacterial Proteins/metabolism , Chromosome Segregation , DNA-Binding Proteins/metabolism , Streptococcus pneumoniae/cytology , Bacterial Capsules/metabolism , Bacterial Proteins/genetics , Cell Division , Cytoskeletal Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Deletion , Models, Biological , Origin Recognition Complex/genetics , Origin Recognition Complex/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism
8.
Nat Microbiol ; 3(2): 197-209, 2018 02.
Article in English | MEDLINE | ID: mdl-29203882

ABSTRACT

Eukaryotic-like serine/threonine kinases (eSTKs) with extracellular PASTA repeats are key membrane regulators of bacterial cell division. How PASTA repeats govern eSTK activation and function remains elusive. Using evolution- and structural-guided approaches combined with cell imaging, we disentangle the role of each PASTA repeat of the eSTK StkP from Streptococcus pneumoniae. While the three membrane-proximal PASTA repeats behave as interchangeable modules required for the activation of StkP independently of cell wall binding, they also control the septal cell wall thickness. In contrast, the fourth and membrane-distal PASTA repeat directs StkP localization at the division septum and encompasses a specific motif that is critical for final cell separation through interaction with the cell wall hydrolase LytB. We propose a model in which the extracellular four-PASTA domain of StkP plays a dual function in interconnecting the phosphorylation of StkP endogenous targets along with septal cell wall remodelling to allow cell division of the pneumococcus.


Subject(s)
Cell Division , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Streptococcus pneumoniae/metabolism , Amino Acid Sequence , Bacterial Proteins/metabolism , Cell Wall/metabolism , Models, Molecular , N-Acetylmuramoyl-L-alanine Amidase , Phosphorylation , Protein Structure, Tertiary , Streptococcus pneumoniae/cytology
9.
J Biol Chem ; 289(34): 23662-9, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25012659

ABSTRACT

The YvcK protein has been shown to be necessary for growth under gluconeogenic conditions in Bacillus subtilis. Amazingly, its overproduction rescues growth and morphology defects of the actin-like protein MreB deletion mutant by restoration of PBP1 localization. In this work, we observed that YvcK was phosphorylated at Thr-304 by the protein kinase PrkC and that phosphorylated YvcK was dephosphorylated by the cognate phosphatase PrpC. We show that neither substitution of this threonine with a constitutively phosphorylated mimicking glutamic acid residue or a phosphorylation-dead mimicking alanine residue nor deletion of prkC or prpC altered the ability of B. subtilis to grow under gluconeogenic conditions. However, we observed that a prpC mutant and a yvcK mutant were more sensitive to bacitracin compared with the WT strain. In addition, the bacitracin sensitivity of strains in which YvcK Thr-304 was replaced with either an alanine or a glutamic acid residue was also affected. We also analyzed rescue of the mreB mutant strain by overproduction of YvcK in which the phosphorylation site was substituted. We show that YvcK T304A overproduction did not rescue the mreB mutant aberrant morphology due to PBP1 mislocalization. The same observation was made in an mreB prkC double mutant overproducing YvcK. Altogether, these data show that YvcK may have two distinct functions: 1) in carbon source utilization independent of its phosphorylation level and 2) in cell wall biosynthesis and morphogenesis through its phosphorylation state.


Subject(s)
Bacillus subtilis/metabolism , Bacterial Proteins/physiology , Mutation , Amino Acid Sequence , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Bacitracin/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Blotting, Western , Drug Resistance, Bacterial , Molecular Sequence Data , Phosphorylation , Tandem Mass Spectrometry , Threonine/metabolism , Two-Hybrid System Techniques
10.
PLoS Genet ; 10(4): e1004275, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24722178

ABSTRACT

Despite years of intensive research, much remains to be discovered to understand the regulatory networks coordinating bacterial cell growth and division. The mechanisms by which Streptococcus pneumoniae achieves its characteristic ellipsoid-cell shape remain largely unknown. In this study, we analyzed the interplay of the cell division paralogs DivIVA and GpsB with the ser/thr kinase StkP. We observed that the deletion of divIVA hindered cell elongation and resulted in cell shortening and rounding. By contrast, the absence of GpsB resulted in hampered cell division and triggered cell elongation. Remarkably, ΔgpsB elongated cells exhibited a helical FtsZ pattern instead of a Z-ring, accompanied by helical patterns for DivIVA and peptidoglycan synthesis. Strikingly, divIVA deletion suppressed the elongated phenotype of ΔgpsB cells. These data suggest that DivIVA promotes cell elongation and that GpsB counteracts it. Analysis of protein-protein interactions revealed that GpsB and DivIVA do not interact with FtsZ but with the cell division protein EzrA, which itself interacts with FtsZ. In addition, GpsB interacts directly with DivIVA. These results are consistent with DivIVA and GpsB acting as a molecular switch to orchestrate peripheral and septal PG synthesis and connecting them with the Z-ring via EzrA. The cellular co-localization of the transpeptidases PBP2x and PBP2b as well as the lipid-flippases FtsW and RodA in ΔgpsB cells further suggest the existence of a single large PG assembly complex. Finally, we show that GpsB is required for septal localization and kinase activity of StkP, and therefore for StkP-dependent phosphorylation of DivIVA. Altogether, we propose that the StkP/DivIVA/GpsB triad finely tunes the two modes of peptidoglycan (peripheral and septal) synthesis responsible for the pneumococcal ellipsoid cell shape.


Subject(s)
Cell Division/physiology , Protein Serine-Threonine Kinases/metabolism , Streptococcus pneumoniae/metabolism , Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Division/genetics , Cell Wall/metabolism , Cytoskeletal Proteins/metabolism , Morphogenesis/physiology , Peptidoglycan/metabolism , Phosphorylation/genetics , Phosphorylation/physiology , Protein Interaction Maps/physiology , Streptococcus pneumoniae/genetics
11.
PLoS One ; 8(10): e75958, 2013.
Article in English | MEDLINE | ID: mdl-24146800

ABSTRACT

A particular class of tyrosine-kinases sharing no structural similarity with eukaryotic tyrosine-kinases has been evidenced in a large array of bacterial species. These bacterial tyrosine-kinases are able to autophosphorylate on a C-terminal tyrosine-rich motif. Their autophosphorylation has been shown to play a crucial role in the biosynthesis or export of capsular polysaccharide. The analysis of the first crystal structure of the staphylococcal tyrosine kinase CapB2 associated with the activating domain of the transmembrane modulator CapA1 had brought conclusive explanation for both the autophosphorylation and activation processes. In order to explain why CapA1 activates CapB2 more efficiently than its cognate transmembrane modulator CapA2, we solved the crystal structure of CapA2B2 and compared it with the previously published structure of CapA1B2. This structural analysis did not provide the expected clues about the activation discrepancy observed between the two modulators. Staphylococcus aureus also encodes for a CapB2 homologue named CapB1 displaying more than 70% sequence similarity and being surprisingly nearly unable to autophosphorylate. We solved the crystal structure of CapA1B1 and carefully compare it with the structure of CapA1B2. The active sites of both proteins are highly conserved and the biochemical characterization of mutant proteins engineered to test the importance of small structural discrepancies identified between the two structures did not explain the inactivity of CapB1. We thus tested if CapB1 could phosphorylate other protein substrates or hydrolyze ATP. However, no activity could be detected in our in vitro assays. Taken together, these data question about the biological role of the homologous protein pairs CapA1/CapB1 and CapA2/CapB2 and we discuss about several possible interpretations.


Subject(s)
Bacterial Proteins/chemistry , Gene Expression Regulation, Bacterial , Protein-Tyrosine Kinases/chemistry , Staphylococcus aureus/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Models, Molecular , Molecular Sequence Data , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Staphylococcus aureus/enzymology , Structural Homology, Protein
12.
J Biol Chem ; 287(25): 20830-8, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22544754

ABSTRACT

In Bacillus subtilis, the ribosome-associated GTPase CpgA is crucial for growth and proper morphology and was shown to be phosphorylated in vitro by the Ser/Thr protein kinase PrkC. To further understand the function of the Escherichia coli RsgA ortholog, CpgA, we first demonstrated that its GTPase activity is stimulated by its association with the 30 S ribosomal subunit. Then the role of CpgA phosphorylation was analyzed. A single phosphorylated residue, threonine 166, was identified by mass spectrometry. Phosphoablative replacement of this residue in CpgA induces a decrease of both its affinity for the 30 S ribosomal subunit and its GTPase activity, whereas a phosphomimetic replacement has opposite effects. Furthermore, cells expressing a nonphosphorylatable CpgA protein present the morphological and growth defects similar to those of a cpgA-deleted strain. Altogether, our results suggest that CpgA phosphorylation on Thr-166 could modulate its ribosome-induced GTPase activity. Given the role of PrkC in B. subtilis spore germination, we propose that CpgA phosphorylation is a key regulatory process that is essential for B. subtilis development.


Subject(s)
Bacillus subtilis/physiology , Bacterial Proteins/metabolism , GTP Phosphohydrolases/metabolism , Ribosome Subunits, Small, Bacterial/metabolism , Bacterial Proteins/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , GTP Phosphohydrolases/genetics , Phosphorylation/physiology , Ribosome Subunits, Small, Bacterial/genetics , Spores, Bacterial/enzymology , Spores, Bacterial/genetics
13.
Mol Microbiol ; 83(4): 746-58, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22211696

ABSTRACT

Eukaryotic-like serine/threonine-kinases are involved in the regulation of a variety of physiological processes in bacteria. In Streptococcus pneumoniae, deletion of the single serine/threonine-kinase gene stkP results in an aberrant cell morphology suggesting that StkP participates in pneumococcus cell division. To understand the function of StkP, we have engineered various pneumococcus strains expressing truncated or kinase-dead forms of StkP. We show that StkP kinase activity, but also its extracellular and cytoplasmic domains per se, are required for pneumococcus cell division. Indeed, we observe that mutant cells show round or elongated shapes with non-functional septa and a chain phenotype, delocalized sites of peptidoglycan synthesis and diffused membrane StkP localization. To gain understanding of the underlying StkP-mediated regulatory mechanism, we show that StkP specifically phosphorylates in vivo the cell division protein DivIVA on threonine 201. Pneumococcus cells expressing non-phosphorylatable DivIVA-T201A possess an elongated shape with a polar bulge and aberrant spatial organization of nascent peptidoglycan. This brings the first evidence of the importance of StkP in relationship to the phosphorylation of one of its substrates in cell division. It is concluded that StkP is a multifunctional protein that plays crucial functions in pneumococcus cell shape and division.


Subject(s)
Bacterial Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Division , Protein Serine-Threonine Kinases/metabolism , Streptococcus pneumoniae/enzymology , Streptococcus pneumoniae/physiology , Bacterial Proteins/genetics , Cell Cycle Proteins/genetics , DNA Mutational Analysis , Microscopy , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...