Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808649

ABSTRACT

Maintenance of immune homeostasis to the intestinal mictrobiota is dependent on a population of effector regulatory T (eTreg) cells that develop from microbiota-reactive induced (i)Treg cells. A cardinal feature of eTreg cells is their production of IL-10, which plays a non-redundant role in immune tolerance of commensal microbes. Here, we identify an unexpected role for IL-2-induced Stat3 signaling to program iTreg cells for eTreg cell differentiation and Il10 transcriptional competency. IL-2 proved to be both necessary and sufficient for eTreg cell development - contingent on Stat3 output of the IL-2 receptor coordinate with IL-2 signaling during early Treg cell commitment. Induction of iTreg cell programming in absence of IL-2-induced Stat3 signaling resulted in impaired eTreg cell differentiation and a failure to produce IL-10. An IL-2 mutein with reduced affinity for the IL-2Rγ (γ c ) chain was found to have blunted IL-2R Stat3 output, resulting in a deficiency of Il10 transcriptional programming that could not be fully rescued by Stat3 signaling subsequent to an initial window of iTreg cell differentiation. These findings expose a heretofore unappreciated role of IL-2 signaling that acts early to program subsequent production of IL-10 by developing eTreg cells, with broad implications for IL-2-based therapeutic interventions in immune-mediated diseases.

2.
Blood Adv ; 7(15): 4200-4214, 2023 08 08.
Article in English | MEDLINE | ID: mdl-36920790

ABSTRACT

Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of inpatients with COVID-19 and correlated the subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+ megakaryocytes that contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-CoV-2-infected primary human megakaryocytes, we demonstrate that megakaryocytes can transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2-containing megakaryocytes are nuclear factor κB (NF-κB)-activated, via p65 and p52; express the NF-κB-mediated cytokines interleukin-6 (IL-6) and IL-1ß; and display high surface expression of Toll-like receptor 2 (TLR2) and TLR4, canonical drivers of NF-κB. In a cohort of 218 inpatients with COVID-19, we correlate frequencies of megakaryocyte subpopulations with clinical outcomes and show that SARS-CoV-2-containing megakaryocytes are a strong risk factor for mortality and multiorgan injury, including respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and intensive care unit admission. Furthermore, we show that SARS-CoV-2+ megakaryocytes are present in lung and brain autopsy tissues from deceased donors who had COVID-19. To our knowledge, this study offers the first evidence implicating SARS-CoV-2+ peripheral megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant investigation in inflammatory disorders beyond COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Megakaryocytes/metabolism , NF-kappa B/metabolism , Lung/metabolism
3.
NPJ Vaccines ; 7(1): 95, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35977964

ABSTRACT

Francisella tularensis, the causative agent of tularemia, is classified as Tier 1 Select Agent with bioterrorism potential. The efficacy of the only available vaccine, LVS, is uncertain and it is not licensed in the U.S. Previously, by using an approach generally applicable to intracellular pathogens, we identified working correlates that predict successful vaccination in rodents. Here, we applied these correlates to evaluate a panel of SchuS4-derived live attenuated vaccines, namely SchuS4-ΔclpB, ΔclpB-ΔfupA, ΔclpB-ΔcapB, and ΔclpB-ΔwbtC. We combined in vitro co-cultures to quantify rodent T-cell functions and multivariate regression analyses to predict relative vaccine strength. The predictions were tested by rat vaccination and challenge studies, which demonstrated a clear relationship between the hierarchy of in vitro measurements and in vivo vaccine protection. Thus, these studies demonstrated the potential power a panel of correlates to screen and predict the efficacy of Francisella vaccine candidates, and in vivo studies in Fischer 344 rats confirmed that SchuS4-ΔclpB and ΔclpB-ΔcapB may be better vaccine candidates than LVS.

4.
Immunity ; 55(3): 494-511.e11, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263568

ABSTRACT

Interleukin (IL)-22 is central to immune defense at barrier sites. We examined the contributions of innate lymphoid cell (ILC) and T cell-derived IL-22 during Citrobacter rodentium (C.r) infection using mice that both report Il22 expression and allow lineage-specific deletion. ILC-derived IL-22 activated STAT3 in C.r-colonized surface intestinal epithelial cells (IECs) but only temporally restrained bacterial growth. T cell-derived IL-22 induced a more robust and extensive activation of STAT3 in IECs, including IECs lining colonic crypts, and T cell-specific deficiency of IL-22 led to pathogen invasion of the crypts and increased mortality. This reflected a requirement for T cell-derived IL-22 for the expression of a host-protective transcriptomic program that included AMPs, neutrophil-recruiting chemokines, and mucin-related molecules, and it restricted IFNγ-induced proinflammatory genes. Our findings demonstrate spatiotemporal differences in the production and action of IL-22 by ILCs and T cells during infection and reveal an indispensable role for IL-22-producing T cells in the protection of the intestinal crypts.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections , Animals , Anti-Bacterial Agents , Immunity, Innate , Interleukins/metabolism , Intestinal Mucosa , Lymphocytes/metabolism , Mice , Mice, Inbred C57BL , T-Lymphocytes/metabolism , Interleukin-22
5.
Nature ; 593(7857): 147-151, 2021 05.
Article in English | MEDLINE | ID: mdl-33828301

ABSTRACT

Bile acids are lipid-emulsifying metabolites synthesized in hepatocytes and maintained in vivo through enterohepatic circulation between the liver and small intestine1. As detergents, bile acids can cause toxicity and inflammation in enterohepatic tissues2. Nuclear receptors maintain bile acid homeostasis in hepatocytes and enterocytes3, but it is unclear how mucosal immune cells tolerate high concentrations of bile acids in the small intestine lamina propria (siLP). CD4+ T effector (Teff) cells upregulate expression of the xenobiotic transporter MDR1 (encoded by Abcb1a) in the siLP to prevent bile acid toxicity and suppress Crohn's disease-like small bowel inflammation4. Here we identify the nuclear xenobiotic receptor CAR (encoded by Nr1i3) as a regulator of MDR1 expression in T cells that can safeguard against bile acid toxicity and inflammation in the mouse small intestine. Activation of CAR induced large-scale transcriptional reprogramming in Teff cells that infiltrated the siLP, but not the colon. CAR induced the expression of not only detoxifying enzymes and transporters in siLP Teff cells, as in hepatocytes, but also the key anti-inflammatory cytokine IL-10. Accordingly, CAR deficiency in T cells exacerbated bile acid-driven ileitis in T cell-reconstituted Rag1-/- or Rag2-/- mice, whereas pharmacological activation of CAR suppressed it. These data suggest that CAR acts locally in T cells that infiltrate the small intestine to detoxify bile acids and resolve inflammation. Activation of this program offers an unexpected strategy to treat small bowel Crohn's disease and defines lymphocyte sub-specialization in the small intestine.


Subject(s)
Bile Acids and Salts/metabolism , Gene Expression Regulation , Intestine, Small/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , T-Lymphocytes/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Constitutive Androstane Receptor , Crohn Disease/metabolism , Female , Ileitis/metabolism , Inflammation/metabolism , Interleukin-10/biosynthesis , Interleukin-10/genetics , Intestine, Small/cytology , Mice
6.
Immunity ; 52(4): 650-667.e10, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294406

ABSTRACT

Appropriate balance of T helper 17 (Th17) and regulatory T (Treg) cells maintains immune tolerance and host defense. Disruption of Th17-Treg cell balance is implicated in a number of immune-mediated diseases, many of which display dysregulation of the insulin-like growth factor (IGF) system. Here, we show that, among effector T cell subsets, Th17 and Treg cells selectively expressed multiple components of the IGF system. Signaling through IGF receptor (IGF1R) activated the protein kinase B-mammalian target of rapamycin (AKT-mTOR) pathway, increased aerobic glycolysis, favored Th17 cell differentiation over that of Treg cells, and promoted a heightened pro-inflammatory gene expression signature. Group 3 innate lymphoid cells (ILC3s), but not ILC1s or ILC2s, were similarly responsive to IGF signaling. Mice with deficiency of IGF1R targeted to T cells failed to fully develop disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Thus, the IGF system represents a previously unappreciated pathway by which type 3 immunity is modulated and immune-mediated pathogenesis controlled.


Subject(s)
Autoimmunity , Encephalomyelitis, Autoimmune, Experimental/immunology , Proto-Oncogene Proteins c-akt/immunology , Receptor, IGF Type 1/immunology , T-Lymphocytes, Regulatory/immunology , TOR Serine-Threonine Kinases/immunology , Th17 Cells/immunology , Animals , Cell Communication , Cell Differentiation , Cell Lineage/genetics , Cell Lineage/immunology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Gene Expression Regulation , Immune Tolerance , Immunity, Innate , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Peptide Fragments/administration & dosage , Proto-Oncogene Proteins c-akt/genetics , Receptor, IGF Type 1/genetics , Signal Transduction , T-Lymphocytes, Regulatory/pathology , TOR Serine-Threonine Kinases/genetics , Th17 Cells/pathology
7.
J Clin Invest ; 129(3): 1314-1328, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30776026

ABSTRACT

It is widely believed that protection against acquisition of HIV or SIV infection requires anti-envelope (anti-Env) antibodies, and that cellular immunity may affect viral loads but not acquisition, except in special cases. Here we provide evidence to the contrary. Mucosal immunization may enhance HIV vaccine efficacy by eliciting protective responses at portals of exposure. Accordingly, we vaccinated macaques mucosally with HIV/SIV peptides, modified vaccinia Ankara-SIV (MVA-SIV), and HIV-gp120-CD4 fusion protein plus adjuvants, which consistently reduced infection risk against heterologous intrarectal SHIVSF162P4 challenge, both high dose and repeated low dose. Surprisingly, vaccinated animals exhibited no anti-gp120 humoral responses above background and Gag- and Env-specific T cells were induced but failed to correlate with viral acquisition. Instead, vaccine-induced gut microbiome alteration and myeloid cell accumulation in colorectal mucosa correlated with protection. Ex vivo stimulation of the myeloid cell-enriched population with SHIV led to enhanced production of trained immunity markers TNF-α and IL-6, as well as viral coreceptor agonist MIP1α, which correlated with reduced viral Gag expression and in vivo viral acquisition. Overall, our results suggest mechanisms involving trained innate mucosal immunity together with antigen-specific T cells, and also indicate that vaccines can have critical effects on the gut microbiome, which in turn can affect resistance to infection. Strategies to elicit similar responses may be considered for vaccine designs to achieve optimal protective efficacy.


Subject(s)
AIDS Vaccines/immunology , Acquired Immunodeficiency Syndrome/immunology , HIV-1/immunology , Immunity, Mucosal , Intestinal Mucosa/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Acquired Immunodeficiency Syndrome/pathology , Acquired Immunodeficiency Syndrome/prevention & control , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Colon/immunology , Colon/pathology , Immunity, Cellular , Intestinal Mucosa/pathology , Macaca mulatta , Rectum/immunology , Rectum/pathology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/prevention & control
8.
Mucosal Immunol ; 11(4): 1219-1229, 2018 07.
Article in English | MEDLINE | ID: mdl-29858581

ABSTRACT

It is unknown whether the gut microbiome affects HIV transmission. In our recent SHIV vaccine study, we found that the naive rhesus macaques from two different sources had significantly different rates of infection against repeated low-dose intrarectal challenge with SHIVSF162P4 virus. Exploring causes, we found that the more susceptible group of seven macaques had significantly more activated CD4+CCR5+Ki67+ T cells in the rectal mucosa than the more resistant group of 11 macaques from a different source. The prevalence of pre-challenge activated rectal CD4 T cells in the naive macaques correlated inversely with the number of challenges required to infect. Because the two naive groups came from different sources, we hypothesized that their microbiomes may differ and might explain the activation difference. Indeed, after sequencing 16s rRNA, we found differences between the two naive groups that correlated with immune activation status. Distinct gut microbiota induced different levels of immune activation ex vivo. Significantly lower ratios of Bacteroides to Prevotella, and significantly lower levels of Firmicutes were found in the susceptible cohort, which were also inversely correlated with high levels of immune activation in the rectal mucosa. Thus, host-microbiome interactions might influence HIV/SIV mucosal transmission through effects on mucosal immune activation.


Subject(s)
Bacteroides/physiology , CD4-Positive T-Lymphocytes/immunology , Firmicutes/physiology , Gastrointestinal Microbiome/immunology , HIV Infections/immunology , HIV-1/physiology , Intestinal Mucosa/immunology , Prevotella/physiology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , Animals , Disease Susceptibility , HIV Infections/microbiology , Humans , Intestinal Mucosa/microbiology , Ki-67 Antigen/metabolism , Lymphocyte Activation , Macaca , RNA, Ribosomal, 16S/analysis , Receptors, CCR5/metabolism , Simian Acquired Immunodeficiency Syndrome/microbiology
9.
PLoS One ; 13(5): e0198140, 2018.
Article in English | MEDLINE | ID: mdl-29799870

ABSTRACT

There are no defined correlates of protection for any intracellular pathogen, including the bacterium Francisella tularensis, which causes tularemia. Evaluating vaccine efficacy against sporadic diseases like tularemia using field trials is problematic, and therefore alternative strategies to test vaccine candidates like the Francisella Live Vaccine Strain (LVS), such as testing in animals and applying correlate measurements, are needed. Recently, we described a promising correlate strategy that predicted the degree of vaccine-induced protection in mice given parenteral challenges, primarily when using an attenuated Francisella strain. Here, we demonstrate that using peripheral blood lymphocytes (PBLs) in this approach predicts LVS-mediated protection against respiratory challenge of Fischer 344 rats with fully virulent F. tularensis, with exceptional sensitivity and specificity. Rats were vaccinated with a panel of LVS-derived vaccines and subsequently given lethal respiratory challenges with Type A F. tularensis. In parallel, PBLs from vaccinated rats were evaluated for their functional ability to control intramacrophage Francisella growth in in vitro co-culture assays. PBLs recovered from co-cultures were also evaluated for relative gene expression using a large panel of genes identified in murine studies. In vitro control of LVS intramacrophage replication reflected the hierarchy of protection. Further, despite variability between individuals, 22 genes were significantly more up-regulated in PBLs from rats vaccinated with LVS compared to those from rats vaccinated with the variant LVS-R or heat-killed LVS, which were poorly protective. These genes included IFN-γ, IL-21, NOS2, LTA, T-bet, IL-12rß2, and CCL5. Most importantly, combining quantifications of intramacrophage growth control with 5-7 gene expression levels using multivariate analyses discriminated protected from non-protected individuals with greater than 95% sensitivity and specificity. The results therefore support translation of this approach to non-human primates and people to evaluate new vaccines against Francisella and other intracellular pathogens.


Subject(s)
Bacterial Vaccines/immunology , Francisella tularensis/immunology , Francisella tularensis/pathogenicity , Immunization , Respiratory System/microbiology , Animals , Female , Gene Expression Regulation/immunology , Immunity, Humoral/immunology , Macrophages/microbiology , Multivariate Analysis , Rats , T-Lymphocytes/immunology , Virulence
10.
J Immunol ; 200(5): 1853-1864, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29374075

ABSTRACT

Unlike cytosolic processing and presentation of viral Ags by virus-infected cells, Ags first expressed in infected nonprofessional APCs, such as CD4+ T cells in the case of HIV, are taken up by dendritic cells and cross-presented. This generally requires entry through the endocytic pathway, where endosomal proteases have first access for processing. Thus, understanding virus escape during cross-presentation requires an understanding of resistance to endosomal proteases, such as cathepsin S (CatS). We have modified HIV-1MN gp120 by mutating a key CatS cleavage site (Thr322Thr323) in the V3 loop of the immunodominant epitope IGPGRAFYTT to IGPGRAFYVV to prevent digestion. We found this mutation to facilitate cross-presentation and provide evidence from MHC binding and X-ray crystallographic structural studies that this results from preservation of the epitope rather than an increased epitope affinity for the MHC class I molecule. In contrast, when the protein is expressed by a vaccinia virus in the cytosol, the wild-type protein is immunogenic without this mutation. These proof-of-concept results show that a virus like HIV, infecting predominantly nonprofessional presenting cells, can escape T cell recognition by incorporating a CatS cleavage site that leads to destruction of an immunodominant epitope when the Ag undergoes endosomal cross-presentation.


Subject(s)
Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , HIV Infections/immunology , HIV/immunology , Immune Evasion/immunology , Peptides/immunology , Animals , Cathepsins/immunology , Dendritic Cells/immunology , Epitopes, T-Lymphocyte/immunology , HEK293 Cells , HIV Envelope Protein gp120/immunology , Histocompatibility Antigens Class I/immunology , Humans , Immunodominant Epitopes/immunology , Mice , Mice, Inbred BALB C , Vaccinia virus/immunology
11.
J Leukoc Biol ; 102(6): 1381-1388, 2017 12.
Article in English | MEDLINE | ID: mdl-28951425

ABSTRACT

Mechanisms that imprint T cell homing to the small intestine have been well studied; however, those for homing to the colon are poorly understood. Recently, we found that these are distinct subcompartments of the gut mucosal immune system, which implies differential homing. Here, we show that colonic CD11c+ APCs imprint CD8+ T cell preferential homing to the colon, in contrast to those from the small intestine that imprint CD8+ T cell homing to the small intestine, and that the differences are related to the variable ability of APCs to induce α4ß7-integrin and CCR9 expression on T cells. Colon APCs also expressed lower levels of retinoic acid-producing enzymes that are known to control the mucosal homing of T cells. These findings are the first to our knowledge to directly demonstrate that colon APCs imprint T cells to selectively home to the large bowel, which is critical for the design of successful T cell-based therapies and vaccines, such as colon cancer immunotherapy and HIV vaccines.


Subject(s)
Antigen-Presenting Cells/immunology , CD11c Antigen/metabolism , Colon/immunology , Intestine, Small/immunology , Receptors, Lymphocyte Homing/metabolism , T-Lymphocytes/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Compartmentation , Cell Movement , Cells, Cultured , Dendritic Cells/cytology , Immunization , Integrins/metabolism , Intestinal Mucosa/immunology , Mice, Inbred C57BL , Receptors, CCR/metabolism , T-Lymphocytes/cytology , Tretinoin/metabolism
12.
PLoS Pathog ; 13(5): e1006395, 2017 May.
Article in English | MEDLINE | ID: mdl-28498847

ABSTRACT

Myeloid derived suppressor cells (MDSCs), which suppress anti-tumor or anti-viral immune responses, are expanded in the peripheral blood and tissues of patients/animals with cancer or viral infectious diseases. We here show that in chronic SIV infection of Indian rhesus macaques, the frequency of MDSCs in the bone marrow (BM) was paradoxically and unexpectedly decreased, but increased in peripheral blood. Reduction of BM MDSCs was found in both CD14+MDSC and Lin-CD15+MDSC subsets. The reduction of MDSCs correlated with high plasma viral loads and low CD4+ T cell counts, suggesting that depletion of BM MDSCs was associated with SIV/AIDS disease progression. Of note, in SHIVSF162P4-infected macaques, which naturally control viral replication within a few months of infection, the frequency of MDSCs in the bone marrow was unchanged. To investigate the mechanisms by which BM MDSCs were reduced during chronic SIV infection, we tested several hypotheses: depletion due to viral infection, alterations in MDSC trafficking, and/or poor MDSC replenishment. We found that the possible mobilization of MDSCs from BM to peripheral tissues and the slow self-replenishment of MDSCs in the BM, along with the viral infection-induced depletion, all contribute to the observed BM MDSC reduction. We first demonstrate MDSC SIV infection in vivo. Correlation between BM CD14+MDSC reduction and CD8+ T cell activation in tissues is consistent with decreased immune suppression by MDSCs. Thus, depletion of BM MDSCs may contribute to the pathologic immune activation during chronic SIV infection and by extension HIV infection.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Macaca mulatta , Myeloid-Derived Suppressor Cells/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Bone Marrow/immunology , Bone Marrow/virology , Disease Models, Animal , Female , Humans , Lymphocyte Activation , Male , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Viral Load , Virus Replication
13.
J Immunol ; 198(9): 3494-3506, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28348274

ABSTRACT

T cells with high functional avidity can sense and respond to low levels of cognate Ag, a characteristic that is associated with more potent responses against tumors and many infections, including HIV. Although an important determinant of T cell efficacy, it has proven difficult to selectively induce T cells of high functional avidity through vaccination. Attempts to induce high-avidity T cells by low-dose in vivo vaccination failed because this strategy simply gave no response. Instead, selective induction of high-avidity T cells has required in vitro culturing of specific T cells with low Ag concentrations. In this study, we combined low vaccine Ag doses with a novel potent cationic liposomal adjuvant, cationic adjuvant formulation 09, consisting of dimethyldioctadecylammonium liposomes incorporating two immunomodulators (monomycolyl glycerol analog and polyinosinic-polycytidylic acid) that efficiently induces CD4 Th cells, as well as cross-primes CD8 CTL responses. We show that vaccination with low Ag dose selectively primes CD4 T cells of higher functional avidity, whereas CD8 T cell functional avidity was unrelated to vaccine dose in mice. Importantly, CD4 T cells of higher functional avidity induced by low-dose vaccinations showed higher cytokine release per cell and lower inhibitory receptor expression (PD-1, CTLA-4, and the apoptosis-inducing Fas death receptor) compared with their lower-avidity CD4 counterparts. Notably, increased functional CD4 T cell avidity improved antiviral efficacy of CD8 T cells. These data suggest that potent adjuvants, such as cationic adjuvant formulation 09, render low-dose vaccination a feasible and promising approach for generating high-avidity T cells through vaccination.


Subject(s)
AIDS Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , CD4-Positive T-Lymphocytes/immunology , HIV Antigens/immunology , HIV/metabolism , Liposomes/administration & dosage , Poly I-C/administration & dosage , Animals , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Cytokines/metabolism , HIV/immunology , Humans , Liposomes/chemistry , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Monoglycerides/chemistry , Quaternary Ammonium Compounds/chemistry
14.
J Acquir Immune Defic Syndr ; 71(4): 353-8, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26545123

ABSTRACT

OBJECTIVE: Few studies have examined the eclipse time of simian immunodeficiency virus/HIV infection through the anal route. We aimed to measure the eclipse time after SIVmac251 intrarectal inoculation, and to investigate the factor(s) associated with early dissemination. DESIGN: Forty macaques were intrarectally challenged with SIVmac251 3 times at 2-week intervals. METHODS: Plasma viral RNA was monitored at 4, 7, 11, 14, 21, and 28 days after infection. Rectal/vaginal tissues were obtained and tissue viral loads (VLs) were measured at day 14 postinfection. RESULTS: Of 40 macaques 26 (65%) had first detectable viral RNAs in the plasma at day 7 after the challenge that led to productive infection. Strikingly, 6 animals (15%) had detectable viral RNA in the plasma as early as at day 4. The Ki67 viral target CD4 T cells in the colorectal tissues were significantly higher in the early or middle-transmitter groups than those in the late-transmitter group. The rectal VL did not correlate with plasma VL at 14-day postinoculation, but did positively correlate with plasma VLs at days 21 and 28 postinfection. CONCLUSIONS: The median eclipse time after intrarectal challenge was 7 days, with a few early transmitters at 4 days. More rapid viral dissemination was associated with a high frequency of colorectal Ki67CCR5CD4T cells, which fuel the local viral replication. Furthermore, local viral replication in the colorectal tissue during the early stage might affect the plasma VL in a delayed manner. Therefore, to reduce/limit these target cells at the portal of viral entry is essential.


Subject(s)
Colon/cytology , Rectum/cytology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus , T-Lymphocytes/classification , Virus Replication/physiology , Animals , Cell Proliferation , Colon/virology , Female , Macaca mulatta , Male , RNA, Viral/blood , Rectum/virology , T-Lymphocytes/physiology , Time Factors , Viral Load
15.
J Leukoc Biol ; 99(3): 475-82, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26467188

ABSTRACT

The programmed death-1 receptor is expressed on a wide range of immune effector cells, including T cells, natural killer T cells, dendritic cells, macrophages, and natural killer cells. In malignancies and chronic viral infections, increased expression of programmed death-1 by T cells is generally associated with a poor prognosis. However, its role in early host microbial defense at the intestinal mucosa is not well understood. We report that programmed death-1 expression is increased on conventional natural killer cells but not on CD4(+), CD8(+) or natural killer T cells, or CD11b(+) or CD11c(+) macrophages or dendritic cells after infection with the mouse pathogen Citrobacter rodentium. Mice genetically deficient in programmed death-1 or treated with anti-programmed death-1 antibody were more susceptible to acute enteric and systemic infection with Citrobacter rodentium. Wild-type but not programmed death-1-deficient mice infected with Citrobacter rodentium showed significantly increased expression of the conventional mucosal NK cell effector molecules granzyme B and perforin. In contrast, natural killer cells from programmed death-1-deficient mice had impaired expression of those mediators. Consistent with programmed death-1 being important for intracellular expression of natural killer cell effector molecules, mice depleted of natural killer cells and perforin-deficient mice manifested increased susceptibility to acute enteric infection with Citrobacter rodentium. Our findings suggest that increased programmed death-1 signaling pathway expression by conventional natural killer cells promotes host protection at the intestinal mucosa during acute infection with a bacterial gut pathogen by enhancing the expression and production of important effectors of natural killer cell function.


Subject(s)
Citrobacter rodentium , Enterobacteriaceae Infections/immunology , Intestinal Mucosa/immunology , Killer Cells, Natural/immunology , Programmed Cell Death 1 Receptor/physiology , Animals , Colon/immunology , Female , Granzymes/biosynthesis , Interferon-gamma/biosynthesis , Male , Mice , Mice, Inbred C57BL , Perforin/biosynthesis , Signal Transduction
16.
PLoS One ; 10(11): e0143001, 2015.
Article in English | MEDLINE | ID: mdl-26600079

ABSTRACT

Interleukin (IL)-15 has multiple roles in innate and adaptive immunity, especially regarding CD8+ T cells and natural killer cells. However, the role of IL-15 in regulating differentiation of T helper cell subsets and mononuclear phagocytes (MPs) in different tissues in vivo is unknown. Here we report that IL-15 indirectly regulates Th17 but not other Th subsets in the intestinal lamina propria (LP), apparently through effects on MPs. Th17 cells in the LP were more prevalent in IL-15 KO mice than their wild-type counterparts, and less prevalent in IL-15 transgenic mice than their wild-type littermates, even co-caged. MPs from the LP of these mice were sufficient to mimic the in vivo finding in vitro by skewing of cocultured wild type OVA-specific CD4+ T cells. However, production of IL-15 or lack thereof by these MPs was not sufficient to explain the skewing, as addition or blockade of IL-15 in the cultures had no effect. Rather, a skewing of the relative proportion of CD11b+, CD103+ and double positive LP MP subsets in transgenic and KO could explain the differences in Th17 cells. Thus, IL-15 may influence MP subsets in the gut in a novel way that alters the frequency of LP Th17 cells.


Subject(s)
Interleukin-15/metabolism , Intestinal Mucosa/immunology , Leukocytes, Mononuclear/cytology , Phagocytes/cytology , Th17 Cells/cytology , Animals , Antigens/immunology , Cell Differentiation/immunology , Flow Cytometry , Interleukin-15/deficiency , Interleukin-17/biosynthesis , Lymphocyte Count , Mice, Inbred C57BL , Mice, Knockout , Phenotype , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th17 Cells/immunology
17.
Clin Immunol ; 155(1): 91-107, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25229164

ABSTRACT

To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.


Subject(s)
Immunity, Cellular , Simian Immunodeficiency Virus/immunology , Viral Vaccines/immunology , Animals , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes , Cells, Cultured , Female , Macaca mulatta
18.
Clin Immunol ; 153(2): 308-22, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24907411

ABSTRACT

Combinatorial HIV/SIV vaccine approaches targeting multiple arms of the immune system might improve protective efficacy. We compared SIV-specific humoral immunity induced in rhesus macaques by five vaccine regimens. Systemic regimens included ALVAC-SIVenv priming and Env boosting (ALVAC/Env); DNA immunization; and DNA plus Env co-immunization (DNA&Env). RepAd/Env combined mucosal replication-competent Ad-env priming with systemic Env boosting. A Peptide/Env regimen, given solely intrarectally, included HIV/SIV peptides followed by MVA-env and Env boosts. Serum antibodies mediating neutralizing, phagocytic and ADCC activities were induced by ALVAC/Env, RepAd/Env and DNA&Env vaccines. Memory B cells and plasma cells were maintained in the bone marrow. RepAd/Env vaccination induced early SIV-specific IgA in rectal secretions before Env boosting, although mucosal IgA and IgG responses were readily detected at necropsy in ALVAC/Env, RepAd/Env, DNA&Env and DNA vaccinated animals. Our results suggest that combined RepAd priming with ALVAC/Env or DNA&Env regimen boosting might induce potent, functional, long-lasting systemic and mucosal SIV-specific antibodies.


Subject(s)
Immunity, Mucosal/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Vaccination/methods , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Drug Therapy, Combination , Enzyme-Linked Immunospot Assay , Gene Products, env/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Macaca mulatta , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Time Factors , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology
19.
J Clin Invest ; 124(6): 2538-49, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24837435

ABSTRACT

Vaccines are largely evaluated for their ability to promote adaptive immunity, with little focus on the induction of negative immune regulators. Adjuvants facilitate and enhance vaccine-induced immune responses and have been explored for mediating protection against HIV. Using a regimen of peptide priming followed by a modified vaccinia Ankara (MVA) boost in a nonhuman primate model, we found that an SIV vaccine incorporating molecular adjuvants mediated partial protection against rectal SIVmac251 challenges. Animals treated with vaccine and multiple adjuvants exhibited a reduced viral load (VL) compared with those treated with vaccine only. Surprisingly, animals treated with adjuvant alone had reduced VLs that were comparable to or better than those of the vaccine-treated group. VL reduction was greatest in animals with the MHC class I allele Mamu-A*01 that were treated with adjuvant only and was largely dependent on CD8+ T cells. Early VLs correlated with Ki67+CCR5+CD4+ T cell frequency, while set-point VL was associated with expansion of a myeloid cell population that was phenotypically similar to myeloid-derived suppressor cells (MDSCs) and that suppressed T cell responses in vitro. MDSC expansion occurred in animals receiving vaccine and was not observed in the adjuvant-only group. Collectively, these results indicate that vaccine-induced MDSCs inhibit protective cellular immunity and suggest that preventing MDSC induction may be critical for effective AIDS vaccination.


Subject(s)
Myeloid Cells/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Adaptive Immunity , Adjuvants, Immunologic/administration & dosage , Animals , CD8-Positive T-Lymphocytes/immunology , Female , Macaca mulatta , Male , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Transforming Growth Factor beta/immunology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...