Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38463986

ABSTRACT

Glutamatergic synapses are the primary site of excitatory synaptic signaling and neural communication in the cerebral cortex. Electron microscopy (EM) studies in non-human model organisms have demonstrated that glutamate synaptic activity and functioning are directly reflected in quantifiable ultrastructural features. Thus, quantitative EM analysis of glutamate synapses in ex vivo preserved human brain tissue has the potential to provide novel insight into in vivo synaptic functioning. However, factors associated with the acquisition and preservation of human brain tissue have resulted in persistent concerns regarding the potential confounding effects of antemortem and postmortem biological processes on synaptic and sub-synaptic ultrastructural features. Thus, we sought to determine how well glutamate synaptic relationships and nanoarchitecture are preserved in postmortem human dorsolateral prefrontal cortex (DLPFC), a region that substantially differs in size and architecture from model systems. Focused ion beam-scanning electron microscopy (FIB-SEM), a powerful volume EM (VEM) approach, was employed to generate high-fidelity, fine-resolution, three-dimensional (3D) micrographic datasets appropriate for quantitative analyses. Using postmortem human DLPFC with a 6-hour postmortem interval, we optimized a tissue preservation and staining workflow that generated samples of excellent ultrastructural preservation and the high-contrast staining intensity required for FIB-SEM imaging. Quantitative analysis of sub-cellular, sub-synaptic and organelle components within glutamate axo-spinous synapses revealed that ultrastructural features of synaptic function and activity were well-preserved within and across individual synapses in postmortem human brain tissue. The synaptic, sub-synaptic and organelle measures were highly consistent with findings from experimental models that are free from antemortem or postmortem effects. Further, dense reconstruction of neuropil revealed a unique, ultrastructurally-complex, spiny dendritic shaft that exhibited features characteristic of neuronal processes with heightened synaptic communication, integration and plasticity. Altogether, our findings provide a critical proof-of-concept that ex vivo VEM analysis provides a valuable and informative means to infer in vivo functioning of human brain.

2.
bioRxiv ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38529497

ABSTRACT

Dopamine (DA) D2-like receptors in both the central nervous system (CNS) and the periphery are key modulators of metabolism. Moreover, disruption of D2-like receptor signaling is implicated in dysglycemia. Yet, the respective metabolic contributions of CNS versus peripheral D2-like receptors including D2 (D2R) and D3 (D3R) receptors remain poorly understood. To address this, we developed new pharmacological tools, D2-like receptor agonists with diminished and delayed blood-brain barrier capability, to selectively manipulate D2R/D3R signaling in the periphery. We designated bromocriptine methiodide (BrMeI), a quaternary methiodide analogue of D2/3R agonist and diabetes drug bromocriptine, as our lead compound based on preservation of D2R/D3R binding and functional efficacy. We then used BrMeI and unmodified bromocriptine to dissect relative contributions of CNS versus peripheral D2R/D3R signaling in treating dysglycemia. Systemic administration of bromocriptine, with unrestricted access to CNS and peripheral targets, significantly improved both insulin sensitivity and glucose tolerance in obese, dysglycemic mice in vivo. In contrast, metabolic improvements were attenuated when access to bromocriptine was restricted either to the CNS through intracerebroventricular administration or delayed access to the CNS via BrMeI. Our findings demonstrate that the coordinated actions of both CNS and peripheral D2-like receptors are required for correcting dysglycemia. Ultimately, the development of a first-generation of drugs designed to selectively target the periphery provides a blueprint for dissecting mechanisms of central versus peripheral DA signaling and paves the way for novel strategies to treat dysglycemia.

3.
Transl Psychiatry ; 14(1): 19, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38199991

ABSTRACT

Antipsychotic (AP)-naive first-episode psychosis (FEP) patients display early dysglycemia, including insulin resistance and prediabetes. Metabolic dysregulation may therefore be intrinsic to psychosis spectrum disorders (PSDs), independent of the metabolic effects of APs. However, the potential biological pathways that overlap between PSDs and dysglycemic states remain to be identified. Using meta-analytic approaches of transcriptomic datasets, we investigated whether AP-naive FEP patients share overlapping gene expression signatures with non-psychiatrically ill early dysglycemia individuals. We meta-analyzed peripheral transcriptomic datasets of AP-naive FEP patients and non-psychiatrically ill early dysglycemia subjects to identify common gene expression signatures. Common signatures underwent pathway enrichment analysis and were then used to identify potential new pharmacological compounds via Integrative Library of Integrated Network-Based Cellular Signatures (iLINCS). Our search results yielded 5 AP-naive FEP studies and 4 early dysglycemia studies which met inclusion criteria. We discovered that AP-naive FEP and non-psychiatrically ill subjects exhibiting early dysglycemia shared 221 common signatures, which were enriched for pathways related to endoplasmic reticulum stress and abnormal brain energetics. Nine FDA-approved drugs were identified as potential drug treatments, of which the antidiabetic metformin, the first-line treatment for type 2 diabetes, has evidence to attenuate metabolic dysfunction in PSDs. Taken together, our findings support shared gene expression changes and biological pathways associating PSDs with dysglycemic disorders. These data suggest that the pathobiology of PSDs overlaps and potentially contributes to dysglycemia. Finally, we find that metformin may be a potential treatment for early metabolic dysfunction intrinsic to PSDs.


Subject(s)
Antipsychotic Agents , Diabetes Mellitus, Type 2 , Metformin , Psychotic Disorders , Humans , Transcriptome , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Psychotic Disorders/drug therapy , Psychotic Disorders/genetics , Glucose , Metformin/pharmacology , Metformin/therapeutic use
4.
Nat Commun ; 15(1): 878, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296993

ABSTRACT

In brain, the striatum is a heterogenous region involved in reward and goal-directed behaviors. Striatal dysfunction is linked to psychiatric disorders, including opioid use disorder (OUD). Striatal subregions are divided based on neuroanatomy, each with unique roles in OUD. In OUD, the dorsal striatum is involved in altered reward processing, formation of habits, and development of negative affect during withdrawal. Using single nuclei RNA-sequencing, we identified both canonical (e.g., dopamine receptor subtype) and less abundant cell populations (e.g., interneurons) in human dorsal striatum. Pathways related to neurodegeneration, interferon response, and DNA damage were significantly enriched in striatal neurons of individuals with OUD. DNA damage markers were also elevated in striatal neurons of opioid-exposed rhesus macaques. Sex-specific molecular differences in glial cell subtypes associated with chronic stress were found in OUD, particularly female individuals. Together, we describe different cell types in human dorsal striatum and identify cell type-specific alterations in OUD.


Subject(s)
Corpus Striatum , Opioid-Related Disorders , Male , Animals , Humans , Female , Macaca mulatta , Corpus Striatum/metabolism , Neurons/metabolism , Opioid-Related Disorders/genetics , Opioid-Related Disorders/metabolism , Gene Expression Profiling
5.
Psychiatry Res ; 331: 115636, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104424

ABSTRACT

Antipsychotic drug (AP)-naïve first-episode psychosis (FEP) patients display premorbid cognitive dysfunctions and dysglycemia. Brain insulin resistance may link metabolic and cognitive disorders in humans. This suggests that central insulin dysregulation represents a component of the pathophysiology of psychosis spectrum disorders (PSDs). Nonetheless, the links between central insulin dysregulation, dysglycemia, and cognitive deficits in PSDs are poorly understood. We investigated whether AP-naïve FEP patients share overlapping brain gene expression signatures with central insulin perturbation (CIP) in rodent models. We systematically compiled and meta-analyzed peripheral transcriptomic datasets of AP-naïve FEP patients along with hypothalamic and hippocampal datasets of CIP rodent models to identify common transcriptomic signatures. The common signatures were used for pathway analysis and to identify potential drug treatments with discordant (reverse) signatures. AP-naïve FEP and CIP (hypothalamus and hippocampus) shared 111 and 346 common signatures respectively, which were associated with pathways related to inflammation, endoplasmic reticulum stress, and neuroplasticity. Twenty-two potential drug treatments were identified, including antidiabetic agents. The pathobiology of PSDs may include central insulin dysregulation, which contribute to dysglycemia and cognitive dysfunction independently of AP treatment. The identified treatments may be tested in early psychosis patients to determine if dysglycemia and cognitive deficits can be mitigated.


Subject(s)
Antipsychotic Agents , Insulin Resistance , Psychotic Disorders , Humans , Antipsychotic Agents/therapeutic use , Insulin , Transcriptome , Psychotic Disorders/drug therapy , Psychotic Disorders/genetics , Psychotic Disorders/complications
6.
Cell Rep ; 42(12): 113471, 2023 12 26.
Article in English | MEDLINE | ID: mdl-37980561

ABSTRACT

Co-transmission of multiple neurotransmitters from a single neuron increases the complexity of signaling information within defined neuronal circuits. Superficial short-axon cells in the olfactory bulb release both dopamine and γ-aminobutyric acid (GABA), yet the specific targets of these neurotransmitters and their respective roles in olfaction have remained unknown. Here, we implement intersectional genetics in mice to selectively block GABA or dopamine release from superficial short-axon cells to identify their distinct cellular targets, impact on circuit function, and behavioral contribution of each neurotransmitter toward olfactory behaviors. We provide functional and anatomical evidence for divergent superficial short-axon cell signaling onto downstream neurons to shape patterns of mitral cell firing that contribute to olfactory-related behaviors.


Subject(s)
Olfactory Bulb , Smell , Mice , Animals , Olfactory Bulb/physiology , Smell/physiology , Dopamine , Interneurons/physiology , gamma-Aminobutyric Acid , Neurotransmitter Agents
7.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873436

ABSTRACT

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

8.
Mol Psychiatry ; 28(11): 4777-4792, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37674018

ABSTRACT

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24-h cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes associated with vesicle-mediated transport and membrane trafficking in the NAc and platelet-derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.


Subject(s)
Nucleus Accumbens , Opioid-Related Disorders , Humans , Nucleus Accumbens/metabolism , Dorsolateral Prefrontal Cortex , Proteome/metabolism , Circadian Rhythm , Opioid-Related Disorders/metabolism , Prefrontal Cortex/metabolism
10.
bioRxiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37425766

ABSTRACT

Dopamine release in striatal circuits, including the nucleus accumbens (NAc), tracks separable features of reward such as motivation and reinforcement. However, the cellular and circuit mechanisms by which dopamine receptors transform dopamine release into distinct constructs of reward remain unclear. Here, we show that dopamine D3 receptor (D3R) signaling in the NAc drives motivated behavior by regulating local NAc microcircuits. Furthermore, D3Rs co-express with dopamine D1 receptors (D1Rs), which regulate reinforcement, but not motivation. Paralleling dissociable roles in reward function, we report non-overlapping physiological actions of D3R and D1R signaling in NAc neurons. Our results establish a novel cellular framework wherein dopamine signaling within the same NAc cell type is physiologically compartmentalized via actions on distinct dopamine receptors. This structural and functional organization provides neurons in a limbic circuit with the unique ability to orchestrate dissociable aspects of reward-related behaviors that are relevant to the etiology of neuropsychiatric disorders.

11.
Front Mol Biosci ; 10: 1147514, 2023.
Article in English | MEDLINE | ID: mdl-37214339

ABSTRACT

In this work, we address the problem of detecting anomalies in a certain laboratory automation setting. At first, we collect video images of liquid transfer in automated laboratory experiments. We mimic the real-world challenges of developing an anomaly detection model by considering two points. First, the size of the collected dataset is set to be relatively small compared to large-scale video datasets. Second, the dataset has a class imbalance problem where the majority of the collected videos are from abnormal events. Consequently, the existing learning-based video anomaly detection methods do not perform well. To this end, we develop a practical human-engineered feature extraction method to detect anomalies from the liquid transfer video images. Our simple yet effective method outperforms state-of-the-art anomaly detection methods with a notable margin. In particular, the proposed method provides 19% and 76% average improvement in AUC and Equal Error Rate, respectively. Our method also quantifies the anomalies and provides significant benefits for deployment in the real-world experimental setting.

12.
bioRxiv ; 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37205475

ABSTRACT

Striatal projection neurons (SPNs) are traditionally segregated into two subpopulations expressing dopamine (DA) D1-like or D2-like receptors. However, this dichotomy is challenged by recent evidence. Functional and expression studies raise important questions: do SPNs co-express different DA receptors, and do these differences reflect unique striatal spatial distributions and expression profiles? Using RNAscope in mouse striatum, we report heterogenous SPN subpopulations distributed across dorsal-ventral and rostral-caudal axes. SPN subpopulations co-express multiple DA receptors, including D1 and D2 (D1/2R) and D1 and D3. Our integrative approach using single-nuclei multi-omics analyses provides a simple consensus to describe SPNs across diverse datasets, connecting it to complementary spatial mapping. Combining RNAscope and multi-omics shows D1/2R SPNs further separate into distinct subtypes according to spatial organization and conserved marker genes. Each SPN cell type contributes uniquely to genetic risk for neuropsychiatric diseases. Our results bridge anatomy and transcriptomics to offer new understandings of striatal neuron heterogeneity.

13.
bioRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37066169

ABSTRACT

Opioid craving and relapse vulnerability is associated with severe and persistent sleep and circadian rhythm disruptions. Understanding the neurobiological underpinnings of circadian rhythms and opioid use disorder (OUD) may prove valuable for developing new treatments for opioid addiction. Previous work indicated molecular rhythm disruptions in the human brain associated with OUD, highlighting synaptic alterations in the dorsolateral prefrontal cortex (DLPFC) and nucleus accumbens (NAc)-key brain regions involved in cognition and reward, and heavily implicated in the pathophysiology of OUD. To provide further insights into the synaptic alterations in OUD, we used mass-spectrometry based proteomics to deeply profile protein expression alterations in bulk tissue and synaptosome preparations from DLPFC and NAc of unaffected and OUD subjects. We identified 55 differentially expressed (DE) proteins in DLPFC homogenates, and 44 DE proteins in NAc homogenates, between unaffected and OUD subjects. In synaptosomes, we identified 161 and 56 DE proteins in DLPFC and NAc, respectively, of OUD subjects. By comparing homogenate and synaptosome protein expression, we identified proteins enriched specifically in synapses that were significantly altered in both DLPFC and NAc of OUD subjects. Across brain regions, synaptic protein alterations in OUD subjects were primarily identified in glutamate, GABA, and circadian rhythm signaling. Using time-of-death (TOD) analyses, where the TOD of each subject is used as a time-point across a 24- hour cycle, we were able to map circadian-related changes associated with OUD in synaptic proteomes related to vesicle-mediated transport and membrane trafficking in the NAc and platelet derived growth factor receptor beta signaling in DLPFC. Collectively, our findings lend further support for molecular rhythm disruptions in synaptic signaling in the human brain as a key factor in opioid addiction.

14.
Neuropsychopharmacology ; 48(9): 1318-1327, 2023 08.
Article in English | MEDLINE | ID: mdl-37041207

ABSTRACT

After drug withdrawal, a key factor triggering relapse is progressively intensified cue-associated drug craving, termed incubation of drug craving. After withdrawal from cocaine self-administration, incubation of cocaine craving develops more reliably in rats compared to mice. This species difference provides an opportunity to determine rat-specific cellular adaptations, which may constitute the critical mechanisms that contribute to incubated cocaine craving in humans. Expression of incubated cocaine seeking is mediated, in part, by cocaine-induced cellular adaptations in medium spiny neurons (MSNs) within the nucleus accumbens (NAc). In rats, decreased membrane excitability in NAc MSNs is a prominent cellular adaptation, which is induced after cocaine self-administration and lasts throughout prolonged drug withdrawal. Here, we show that, similar to rats, mice exhibit decreased membrane excitability of dopamine D1 receptor (D1)-, but not D2 (D2)-, expressing MSNs within the NAc shell (NAcSh) after 1 d withdrawal from cocaine self-administration. However, in contrast to rats, this membrane adaptation does not persist in mice, diminishing after 45-d withdrawal. We also find that restoring the membrane excitability of NAcSh MSNs after cocaine withdrawal decreases cocaine seeking in rats. This suggests that drug-induced membrane adaptations are essential for behavioral expression of incubated cocaine craving. In mice, however, experimentally inducing hypoactivity of D1 NAcSh MSNs after cocaine withdrawal does not alter cocaine seeking, suggesting that MSN hypo-excitability alone is insufficient to increase cocaine seeking. Together, our results demonstrate an overall permissive role of cocaine-induced hypoactivity of NAcSh MSNs in gating increased cocaine seeking after prolonged cocaine withdrawal.


Subject(s)
Cocaine-Related Disorders , Cocaine , Substance Withdrawal Syndrome , Humans , Rats , Mice , Animals , Craving , Nucleus Accumbens/metabolism , Neurons/metabolism , Cocaine-Related Disorders/metabolism , Receptors, Dopamine/metabolism , Substance Withdrawal Syndrome/metabolism
15.
Am J Pathol ; 193(5): 558-566, 2023 05.
Article in English | MEDLINE | ID: mdl-36773785

ABSTRACT

Hepatic zonation is critical for most metabolic functions in liver. Wnt signaling plays an important role in establishing and maintaining liver zonation. Yet, the anatomic expression of Wnt signaling components, especially all 10 Frizzled (Fzd) receptors, has not been characterized in adult liver. To address this, the spatial expression of Fzd receptors was quantitatively mapped in adult mouse liver via multiplex fluorescent in situ hybridization. Although all 10 Fzd receptors were expressed within a metabolic unit, Fzd receptors 1, 4, and 6 were the highest expressed. Although most Wnt signaling occurs in zone 3, expression of most Fzd receptors was not zonated. In contrast, Fzd receptor 6 was preferentially expressed in zone 1. Wnt2 and Wnt9b expression was highly zonated and primarily found in zone 3. Therefore, the current results suggest that zonated Wnt/ß-catenin signaling at baseline occurs primarily due to Wnt2 and Wnt9b rather than zonation of Fzd mRNA expression. Finally, the study showed that Fzd receptors and Wnts are not uniformly expressed by all hepatic cell types. Instead, there is broad distribution among both hepatocytes and nonparenchymal cells, including endothelial cells. Overall, this establishment of a definitive mRNA expression atlas, especially of Fzd receptors, opens the door to future functional characterization in healthy and diseased liver states.


Subject(s)
Receptors, Wnt , Wnt Proteins , Mice , Animals , Receptors, Wnt/genetics , Receptors, Wnt/metabolism , Wnt Proteins/genetics , In Situ Hybridization, Fluorescence , Endothelial Cells/metabolism , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Liver/metabolism , Wnt Signaling Pathway , RNA, Messenger/genetics , RNA, Messenger/metabolism , beta Catenin/metabolism
16.
Diabetes ; 72(1): 3-15, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36538602

ABSTRACT

Catecholamine neurotransmitters dopamine (DA) and norepinephrine (NE) are essential for a myriad of functions throughout the central nervous system, including metabolic regulation. These molecules are also present in the pancreas, and their study may shed light on the effects of peripheral neurotransmission on glycemic control. Though sympathetic innervation to islets provides NE that signals at local α-cell and ß-cell adrenergic receptors to modify hormone secretion, α-cells and ß-cells also synthesize catecholamines locally. We propose a model where α-cells and ß-cells take up catecholamine precursors in response to postprandial availability, preferentially synthesizing DA. The newly synthesized DA signals in an autocrine/paracrine manner to regulate insulin and glucagon secretion and maintain glycemic control. This enables islets to couple local catecholamine signaling to changes in nutritional state. We also contend that the DA receptors expressed by α-cells and ß-cells are targeted by antipsychotic drugs (APDs)-some of the most widely prescribed medications today. Blockade of local DA signaling contributes significantly to APD-induced dysglycemia, a major contributor to treatment discontinuation and development of diabetes. Thus, elucidating the peripheral actions of catecholamines will provide new insights into the regulation of metabolic pathways and may lead to novel, more effective strategies to tune metabolism and treat diabetes.


Subject(s)
Antipsychotic Agents , Islets of Langerhans , Catecholamines/metabolism , Antipsychotic Agents/adverse effects , Antipsychotic Agents/metabolism , Glycemic Control , Norepinephrine/metabolism , Dopamine/metabolism , Islets of Langerhans/metabolism , Neurotransmitter Agents/metabolism
17.
Front Syst Neurosci ; 16: 1059089, 2022.
Article in English | MEDLINE | ID: mdl-36532632

ABSTRACT

Despite the prevalence of opioid misuse, opioids remain the frontline treatment regimen for severe pain. However, opioid safety is hampered by side-effects such as analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, or reward. These side effects promote development of opioid use disorders and ultimately cause overdose deaths due to opioid-induced respiratory depression. The intertwined nature of signaling via µ-opioid receptors (MOR), the primary target of prescription opioids, with signaling pathways responsible for opioid side-effects presents important challenges. Therefore, a critical objective is to uncouple cellular and molecular mechanisms that selectively modulate analgesia from those that mediate side-effects. One such mechanism could be the transactivation of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-effects can be uncoupled from analgesia signaling via targeting RTK family receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This review focuses on the current state of knowledge surrounding the basic pharmacology of RTKs and bidirectional regulation of MOR signaling, as well as how MOR-RTK signaling may modulate undesirable effects of chronic opioid use, including opioid analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, and reward. Further research is needed to better understand RTK-MOR transactivation signaling pathways, and to determine if RTKs are a plausible therapeutic target for mitigating opioid side effects.

19.
Curr Environ Health Rep ; 9(4): 563-573, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36201109

ABSTRACT

PURPOSE OF REVIEW: Sex dimorphism in Parkinson's disease (PD) is an ostensible feature of the neurological disorder, particularly as men are 1.5-2 times more likely to develop PD than women. Clinical features of the disease, such as presentation at onset, most prevalent symptoms, and response to treatment, are also affected by sex. Despite these well-known sex differences in PD risk and phenotype, the mechanisms that impart sex dimorphisms in PD remain poorly understood. RECENT FINDINGS: As PD incidence is influenced by environmental factors, an intriguing pattern has recently emerged in research studies suggesting a male-specific vulnerability to dopaminergic neurodegeneration caused by neurotoxicant exposure, with relative protection in females. These new experimental data have uncovered potential mechanisms that provide clues to the source of sex differences in dopaminergic neurodegeneration and other PD pathology such as alpha-synuclein toxicity. In this review, we discuss the emerging evidence of increased male sensitivity to neurodegeneration from environmental exposures. We examine mechanisms underlying dopaminergic neurodegeneration and PD-related pathologies with evidence supporting the roles of estrogen, SRY expression, the vesicular glutamate transporter VGLUT2, and the microbiome as prospective catalysts for male vulnerability. We also highlight the importance of including sex as a biological variable, particularly when evaluating dopaminergic neurotoxicity in the context of PD.


Subject(s)
Parkinson Disease , Female , Male , Humans , Parkinson Disease/etiology , Sex Characteristics , Prospective Studies
20.
Front Physiol ; 13: 957484, 2022.
Article in English | MEDLINE | ID: mdl-36111160

ABSTRACT

Macromolecular structure classification from cryo-electron tomography (cryo-ET) data is important for understanding macro-molecular dynamics. It has a wide range of applications and is essential in enhancing our knowledge of the sub-cellular environment. However, a major limitation has been insufficient labelled cryo-ET data. In this work, we use Contrastive Self-supervised Learning (CSSL) to improve the previous approaches for macromolecular structure classification from cryo-ET data with limited labels. We first pretrain an encoder with unlabelled data using CSSL and then fine-tune the pretrained weights on the downstream classification task. To this end, we design a cryo-ET domain-specific data-augmentation pipeline. The benefit of augmenting cryo-ET datasets is most prominent when the original dataset is limited in size. Overall, extensive experiments performed on real and simulated cryo-ET data in the semi-supervised learning setting demonstrate the effectiveness of our approach in macromolecular labeling and classification.

SELECTION OF CITATIONS
SEARCH DETAIL
...