Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2310480, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669281

ABSTRACT

Conjugated polymers are promising materials for thermoelectric applications, however, at present few effective and well-understood strategies exist to further advance their thermoelectric performance. Here a new model system is reported for a better understanding of the key factors governing their thermoelectric properties: aligned, ribbon-phase poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) doped by ion-exchange doping. Using a range of microstructural and spectroscopic methods, the effect of controlled incorporation of tie-chains between the crystalline domains is studied through blending of high and low molecular weight chains. The tie chains provide efficient transport pathways between crystalline domains and lead to significantly enhanced electrical conductivity of 4810 S cm-1, which is not accompanied by a reduction in Seebeck coefficient or a large increase in thermal conductivity. Respectable power factors of 173 µW m-1 K-2 are demonstrated in this model system. The approach is generally applicable to a wide range of semicrystalline conjugated polymers and could provide an effective pathway for further enhancing their thermoelectric properties and overcome traditional trade-offs in optimization of thermoelectric performance.

2.
ACS Polym Au ; 4(2): 98-108, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38618003

ABSTRACT

Three-dimensional (3D) printing of elastomers enables the fabrication of many technologically important structures and devices. However, there remains a critical need for the development of reprocessable, solvent-free, soft elastomers that can be printed without the need for post-treatment. Herein, we report modular soft elastomers suitable for direct ink writing (DIW) printing by physically cross-linking associative polymers with a high fraction of reversible bonds. We designed and synthesized linear-associative-linear (LAL) triblock copolymers; the middle block is an associative polymer carrying amide groups that form double hydrogen bonding, and the end blocks aggregate to hard glassy domains that effectively act as physical cross-links. The amide groups do not aggregate to nanoscale clusters and only slow down polymer dynamics without changing the shape of the linear viscoelastic spectra; this enables molecular control over energy dissipation by varying the fraction of the associative groups. Increasing the volume fraction of the end linear blocks increases the network stiffness by more than 100 times without significantly compromising the extensibility. We created elastomers with Young's moduli ranging from 8 kPa to 8 MPa while maintaining the tensile breaking strain around 150%. Using a high-temperature DIW printing platform, we transformed our elastomers to complex, highly deformable 3D structures without involving any solvent or post-print processing. Our elastomers represent the softest melt reprocessable materials for DIW printing. The developed LAL polymers synergize emerging homogeneous associative polymers with a high fraction of reversible bonds and classical block copolymer self-assembly to form a dual-cross-linked network, providing a versatile platform for the modular design and development of soft melt reprocessable elastomeric materials for practical applications.

3.
Phys Biol ; 21(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38452380

ABSTRACT

Understanding the structural and functional development of human-induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) is essential to engineering cardiac tissue that enables pharmaceutical testing, modeling diseases, and designing therapies. Here we use a method not commonly applied to biological materials, small angle x-ray scattering, to characterize the structural development of hiPSC-CMs within three-dimensional engineered tissues during their preliminary stages of maturation. An x-ray scattering experimental method enables the reliable characterization of the cardiomyocyte myofilament spacing with maturation time. The myofilament lattice spacing monotonically decreases as the tissue matures from its initial post-seeding state over the span of 10 days. Visualization of the spacing at a grid of positions in the tissue provides an approach to characterizing the maturation and organization of cardiomyocyte myofilaments and has the potential to help elucidate mechanisms of pathophysiology, and disease progression, thereby stimulating new biological hypotheses in stem cell engineering.


Subject(s)
Induced Pluripotent Stem Cells , Myofibrils , Humans , X-Rays , Cell Differentiation/physiology , Myocytes, Cardiac/physiology , Induced Pluripotent Stem Cells/physiology , Tissue Engineering/methods
4.
Sci Rep ; 14(1): 4473, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396051

ABSTRACT

We present a new ferroelectric nematic material, 4-((4'-((trans)-5-ethyloxan-2-yl)-2',3,5,6'-tetrafluoro-[1,1'-biphenyl]-4-yl)difluoromethoxy)-2,6-difluorobenzonitrile (AUUQU-2-N) and its higher homologues, the molecular structures of which include fluorinated building blocks, an oxane ring, and a terminal cyano group, all contributing to a large molecular dipole moment of about 12.5 D. We observed that AUUQU-2-N has three distinct liquid crystal phases, two of which were found to be polar phases with a spontaneous electric polarization Ps of up to 6 µC cm-2. The highest temperature phase is a common enantiotropic nematic (N) exhibiting only field-induced polarization. The lowest-temperature, monotropic phase proved to be a new example of the ferroelectric nematic phase (NF), evidenced by a single-peak polarization reversal current response, a giant imaginary dielectric permittivity on the order of 103, and the absence of any smectic layer X-ray diffraction peaks. The ordinary nematic phase N and the ferroelectric nematic phase NF are separated by an antiferroelectric liquid crystal phase which has low permittivity and a polarization reversal current exhibiting a characteristic double-peak response. In the polarizing light microscope, this antiferroelectric phase shows characteristic zig-zag defects, evidence of a layered structure. These observations suggest that this is another example of the recently discovered smectic ZA (SmZA) phase, having smectic layers with the molecular director parallel to the layer planes. The diffraction peaks from the smectic layering have not been observed to date but detailed 2D X-ray studies indicate the presence of additional short-range structures including smectic C-type correlations in all three phases-N, SmZA and NF-which may shed new light on the understanding of polar and antipolar order in these phases.

5.
Small ; : e2311832, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386283

ABSTRACT

The molecular foundations of epidermal cell wall mechanics are critical for understanding structure-function relationships of primary cell walls in plants and facilitating the design of bioinspired materials. To uncover the molecular mechanisms regulating the high extensibility and strength of the cell wall, the onion epidermal wall is stretched uniaxially to various strains and cell wall structures from mesoscale to atomic scale are characterized. Upon longitudinal stretching to high strain, epidermal walls contract in the transverse direction, resulting in a reduced area. Atomic force microscopy shows that cellulose microfibrils exhibit orientation-dependent rearrangements at high strains: longitudinal microfibrils are straightened out and become highly ordered, while transverse microfibrils curve and kink. Small-angle X-ray scattering detects a 7.4 nm spacing aligned along the stretch direction at high strain, which is attributed to distances between individual cellulose microfibrils. Furthermore, wide-angle X-ray scattering reveals a widening of (004) lattice spacing and contraction of (200) lattice spacing in longitudinally aligned cellulose microfibrils at high strain, which implies longitudinal stretching of the cellulose crystal. These findings provide molecular insights into the ability of the wall to bear additional load after yielding: the aggregation of longitudinal microfibrils impedes sliding and enables further stretching of the cellulose to bear increased loads.

6.
JACS Au ; 4(1): 177-188, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38274264

ABSTRACT

Plant cell walls are abundant sources of materials and energy. Nevertheless, cell wall nanostructure, specifically how pectins interact with cellulose and hemicelluloses to construct a robust and flexible biomaterial, is poorly understood. X-ray scattering measurements are minimally invasive and can reveal ultrastructural, compositional, and physical properties of materials. Resonant X-ray scattering takes advantage of compositional differences by tuning the energy of the incident X-ray to absorption edges of specific elements in a material. Using Tender Resonant X-ray Scattering (TReXS) at the calcium K-edge to study hypocotyls of the model plant, Arabidopsis thaliana, we detected distinctive Ca features that we hypothesize correspond to previously unreported Ca-Homogalacturonan (Ca-HG) nanostructures. When Ca-HG structures were perturbed by chemical and enzymatic treatments, cellulose microfibrils were also rearranged. Moreover, Ca-HG nanostructure was altered in mutants with abnormal cellulose, pectin, or hemicellulose content. Our results indicate direct structural interlinks between components of the plant cell wall at the nanoscale and reveal mechanisms that underpin both the structural integrity of these components and the molecular architecture of the plant cell wall.

8.
Front Plant Sci ; 14: 1212126, 2023.
Article in English | MEDLINE | ID: mdl-37662163

ABSTRACT

Calcium is important for the growth and development of plants. It serves crucial functions in cell wall and cell membrane structure and serves as a secondary messenger in signaling pathways relevant to nutrient and immunity responses. Thus, measuring calcium levels in plants is important for studies of plant biology and for technology development in food, agriculture, energy, and forest industries. Often, calcium in plants has been measured through techniques such as atomic absorption spectrophotometry (AAS), inductively coupled plasma-mass spectrometry (ICP-MS), and electrophysiology. These techniques, however, require large sample sizes, chemical extraction of samples or have limited spatial resolution. Here, we used near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the calcium L- and K-edges to measure the calcium to carbon mass ratio with spatial resolution in plant samples without requiring chemical extraction or large sample sizes. We demonstrate that the integrated absorbance at the calcium L-edge and the edge jump in the fluorescence yield at the calcium K-edge can be used to quantify the calcium content as the calcium mass fraction, and validate this approach with onion epidermal peels and ICP-MS. We also used NEXAFS to estimate the calcium mass ratio in hypocotyls of a model plant, Arabidopsis thaliana, which has a cell wall composition that is similar to that of onion epidermal peels. These results show that NEXAFS spectroscopy performed at the calcium edge provides an approach to quantify calcium levels within plants, which is crucial for understanding plant physiology and advancing plant-based materials.

10.
J Phys Chem C Nanomater Interfaces ; 127(25): 12206-12217, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37415971

ABSTRACT

Chemically doped poly[2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) shows promise for many organic electronic applications, but rationalizing its charge transport properties is challenging because conjugated polymers are inhomogeneous, with convoluted optical and solid-state transport properties. Herein, we use the semilocalized transport (SLoT) model to quantify how the charge transport properties of PBTTT change as a function of iron(III) chloride (FeCl3) doping level. We use the SLoT model to calculate fundamental transport parameters, including the carrier density needed for metal-like electrical conductivities and the position of the Fermi energy level with respect to the transport edge. We then contextualize these parameters with other polymer-dopant systems and previous PBTTT reports. Additionally, we use grazing incidence wide-angle X-ray scattering and spectroscopic ellipsometry techniques to better characterize inhomogeneity in PBTTT. Our analyses indicate that PBTTT obtains high electrical conductivities due to its quickly rising reduced Fermi energy level, and this rise is afforded by its locally high carrier densities in highly ordered microdomains. Ultimately, this report sets a benchmark for comparing transport properties across polymer-dopant-processing systems.

11.
ACS Appl Mater Interfaces ; 15(29): 35227-35238, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37449957

ABSTRACT

This study investigates the solid-state charge transport properties of the oxidized forms of dioxythiophene-based alternating copolymers consisting of an oligoether-functionalized 3,4-propylenedioxythiophene (ProDOT) copolymerized with different aryl groups, dimethyl ProDOT (DMP), 3,4-ethylenedioxythiophene (EDOT), and 3,4-phenylenedioxythiophene (PheDOT), respectively, to yield copolymers P(OE3)-D, P(OE3)-E, and P(OE3)-Ph. At a dopant concentration of 5 mM FeTos3, the electrical conductivities of these copolymers vary significantly (ranging between 9 and 195 S cm-1) with the EDOT copolymer, P(OE3)-E, achieving the highest electrical conductivity. UV-vis-NIR and X-ray spectroscopies show differences in both susceptibility to oxidative doping and extent of oxidation for the P(OE3) series, with P(OE3)-E being the most doped. Wide-angle X-ray scattering measurements indicate that P(OE3)-E generally demonstrates the lowest paracrystallinity values in the series, as well as relatively small π-π stacking distances. The significant (i.e., order of magnitude) increase in electrical conductivity of doped P(OE3)-E films versus doped P(OE3)-D or P(OE3)-Ph films can therefore be attributed to P(OE3)-E exhibiting both the highest carrier ratios in the P(OE3) series, along with good π-π overlap and local ordering (low paracrystallinity values). Furthermore, these trends in the extent of doping and paracrystallinity are consistent with the reduced Fermi energy level and transport function prefactor parameters calculated using the semilocalized transport (SLoT) model. Observed differences in carrier ratios at the transport edge (ct) and reduced Fermi energies [η(c)] suggest a broader electronic band (better overlap and more delocalization) for the EDOT-incorporating P(OE3)-E polymer relative to P(OE3)-D and P(OE3)-Ph. Ultimately, we rationalize improvements in electrical conductivity due to microstructural and doping enhancements caused by EDOT incorporation, a structure-property relationship worth considering in the future design of highly electrically conductive systems.

12.
Langmuir ; 39(23): 8215-8223, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37260231

ABSTRACT

X-ray photon correlation spectroscopy (XPCS) is a versatile tool to measure dynamics on the nanometer to micrometer scale in bulk samples. XPCS has also been applied in grazing incidence (GI) geometry to examine the dynamics of surface layers. However, considering GI scattering experiments more universally, the GI geometry leads to a superposition of signals due to reflection and refraction effects, also known from the distorted-wave Born approximation (DWBA). In this paper, the impact of these reflection and refraction effects on the correlation analysis is determined experimentally by measuring grazing incidence transmission XPCS (GT-XPCS) and grazing incidence XPCS (GI-XPCS) simultaneously for a thin film sample, showing non-equilibrium dynamics. The results of the GI and GT geometry comparisons are combined within the framework of the standardly applied, simplified DWBA. These calculations allow identifying the main contributions of the detected signal from the leading scattering terms along the out-of-plane direction qz, which dominate the measured intensity pattern on the detector. In combination with the calculation of the non-linear effect of refraction in GTSAXS and GISAXS, it is possible to identify experimental conditions that can be chosen to run experiments and data analysis as close as possible to transmission XPCS and to explain which limitations for data interpretations are observed. Consequently, the beam exposure can be significantly reduced by using GI geometry only. Calculations of experimental settings prior to experiments are detailed to determine suitable qz regions for a variety of material systems measured in bulk-sensitive GI-XPCS experiments, allowing us to determine the scaling behavior of typical decay times as a function of q that is comparable to the scaling behavior obtained in distortion-free GT-XPCS or transmission XPCS experiments.

13.
Rev Sci Instrum ; 94(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37144942

ABSTRACT

The ability of the soft matter interfaces beamline at National Synchrotron Light Source II to access x-ray energy in the tender x-ray regime, i.e., from 2.1 to 5 keV, enables new resonant x-ray scattering studies at the sulfur K-edge and others. We present a new approach to correct data acquired in the tender x-ray regime with a Pilatus3 detector in order to improve the data quality and to correct the various artifacts inherent to hybrid pixel detectors, such as variations in modules' efficiency or noisy detector module junctions. This new flatfielding significantly enhances the data quality and enables detection of weak scattering signals.

14.
Soft Matter ; 19(18): 3257-3266, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37060147

ABSTRACT

Randomly stacked 2D hexagonal close-packed (RHCP) layer structures are frequently observed in colloids and other material systems but are considered metastable. We report a stable RHCP phase domain of poly(butadiene-b-ethylene oxide) (PB-PEO) diblock copolymer micellar colloids in water. The stable RHCP colloidal crystals emerge in the middle of a continuously transiting phase domain of close-packed PB-PEO colloids from a face-centered cubic (FCC) polytype to a HCP polytype. We attribute the stability of RHCP structures to two competing contributions, entropic preference for FCC lattices and long PEO corona chains stabilizing HCP lattices. When these two contributions become comparable in the phase space, thermal fluctuation randomizes the stacking order of the 2D-HCP layers, and RHCP orders are stabilized. The continuously transiting close-packed structures of PB-PEO colloids with stable RHCP states suggest that similar structural transitions and equivalent RHCP states may occur in other polytypic crystal systems because polytypic crystals have the common crystal construction rule, i.e., stacking 2D-HCP lattice layer groups in different orders.

15.
Proc Natl Acad Sci U S A ; 120(8): e2217150120, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36791101

ABSTRACT

We have structurally characterized the liquid crystal (LC) phase that can appear as an intermediate state when a dielectric nematic, having polar disorder of its molecular dipoles, transitions to the almost perfectly polar-ordered ferroelectric nematic. This intermediate phase, which fills a 100-y-old void in the taxonomy of smectic LCs and which we term the "smectic ZA," is antiferroelectric, with the nematic director and polarization oriented parallel to smectic layer planes, and the polarization alternating in sign from layer to layer with a 180 Å period. A Landau free energy, originally derived from the Ising model of ferromagnetic ordering of spins in the presence of dipole-dipole interactions, and applied to model incommensurate antiferroelectricity in crystals, describes the key features of the nematic-SmZA-ferroelectric nematic phase sequence.

16.
Acta Biomater ; 160: 176-186, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36706852

ABSTRACT

The multiscale structure of biomaterials enables their exceptional mechanical robustness, yet the impact of each constituent at their relevant length scale remains elusive. We used SAXD analysis to expose the intact chitin-fiber architecture within the exoskeleton on a scorpion's claw, revealing varying orientations, including Bouligand and unidirectional regions different from other arthropod species. We uncovered the contribution of individual components' constituent behavior to its mechanical properties from the micro- to the nanoscale. At the microscale, in-situ micromechanical experiments were used to determine site-specific stiffness, strength, and failure of the biocomposite due to fiber orientation, while metal-crosslinking of proteins is characterized via fluorescence maps. At the constituent level, combined with FEA simulations, we uncovered the behavior of fiber-matrix deformation with fiber diameter <53.7 nm and protein modulus in the range 1.4-11 MPa. The unveiled microstructure-mechanics relationship sheds light on the evolved structural functionalities and constituents' interactions within the scorpion cuticle. STATEMENT OF SIGNIFICANCE: The pincer exoskeleton is a fundamental part of the scorpion's body due to its multifunctionality. Precise structural and compositional analysis within the hierarchy is paramount to understand the fundamentals of the mechanical properties of the composite exoskeleton. Here, we expose the intact chitin-fiber architecture of the pincer exoskeleton using nondestructive analysis. In-situ mechanical characterization was performed at nanometer levels within the exoskeleton hierarchy, which complemented with simulations, uncovered the elastic modulus of the protein matrix. Our findings confirm the presence and distribution of metal ions and their role as reinforcements in the protein matrix via ligand coordinate bonds. In future work, these findings can be of great potential to inspire the design of composite materials.


Subject(s)
Exoskeleton Device , Scorpions , Animals , Ankle , Proteins , Chitin/chemistry
17.
Macromol Biosci ; 23(3): e2200343, 2023 03.
Article in English | MEDLINE | ID: mdl-36415071

ABSTRACT

Advanced manufacturing has received considerable attention as a tool for the fabrication of cell scaffolds however, finding ideal biocompatible and biodegradable materials that fit the correct parameters for 3D printing and guide cells to align remain a challenge. Herein, a photocrosslinkable smectic-A (Sm-A) liquid crystal elastomer (LCE) designed for 3D printing is presented, that promotes cell proliferation but most importantly induces cell anisotropy. The LCE-based bio-ink allows the 3D duplication of a highly complex brain structure generated from an animal model. Vascular tissue models are generated from fluorescently stained mouse tissue spatially imaged using confocal microscopy and subsequently processed to create a digital 3D model suitable for printing. The 3D structure is reproduced using a Digital Light Processing (DLP) stereolithography (SLA) desktop 3D printer. Synchrotron Small-Angle X-ray Diffraction (SAXD) data reveal a strong alignment of the LCE layering within the struts of the printed 3D scaffold. The resultant anisotropy of the LCE struts is then shown to direct cell growth. This study offers a simple approach to produce model tissues built within hours that promote cellular alignment.


Subject(s)
Biocompatible Materials , Liquid Crystals , Animals , Mice , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Elastomers/chemistry , Ink , Liquid Crystals/chemistry , Printing, Three-Dimensional
18.
Angew Chem Int Ed Engl ; 62(1): e202211600, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36269867

ABSTRACT

Herein, a route to produce highly electrically conductive doped hydroxymethyl functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films, termed PEDOT(OH) with metal-like charge transport properties using a fully solution processable precursor polymer is reported. This is achieved via an ester-functionalized PEDOT derivative [PEDOT(EHE)] that is soluble in a range of solvents with excellent film-forming ability. PEDOT(EHE) demonstrates moderate electrical conductivities of 20-60 S cm-1 and hopping-like (i.e., thermally activated) transport when doped with ferric tosylate (FeTos3 ). Upon basic hydrolysis of PEDOT(EHE) films, the electrically insulative side chains are cleaved and washed from the polymer film, leaving a densified film of PEDOT(OH). These films, when optimally doped, reach electrical conductivities of ≈1200 S cm-1 and demonstrate metal-like (i.e., thermally deactivated and band-like) transport properties and high stability at comparable doping levels.

19.
Proc Natl Acad Sci U S A ; 119(47): e2210062119, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36375062

ABSTRACT

We report the observation of the smectic AF, a liquid crystal phase of the ferroelectric nematic realm. The smectic AF is a phase of small polar, rod-shaped molecules that form two-dimensional fluid layers spaced by approximately the mean molecular length. The phase is uniaxial, with the molecular director, the local average long-axis orientation, normal to the layer planes, and ferroelectric, with a spontaneous electric polarization parallel to the director. Polarization measurements indicate almost complete polar ordering of the ∼10 Debye longitudinal molecular dipoles, and hysteretic polarization reversal with a coercive field ∼2 × 105 V/m is observed. The SmAF phase appears upon cooling in two binary mixtures of partially fluorinated mesogens: 2N/DIO, exhibiting a nematic (N)-smectic ZA (SmZA)-ferroelectric nematic (NF)-SmAF phase sequence, and 7N/DIO, exhibiting an N-SmZA-SmAF phase sequence. The latter presents an opportunity to study a transition between two smectic phases having orthogonal systems of layers.

20.
J Am Chem Soc ; 144(18): 8138-8152, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35452210

ABSTRACT

Controlling the interfaces and interactions of colloidal nanoparticles (NPs) via tethered molecular moieties is crucial for NP applications in engineered nanomaterials, optics, catalysis, and nanomedicine. Despite a broad range of molecular types explored, there is a need for a flexible approach to rationally vary the chemistry and structure of these interfacial molecules for controlling NP stability in diverse environments, while maintaining a small size of the NP molecular shell. Here, we demonstrate that low-molecular-weight, bifunctional comb-shaped, and sequence-defined peptoids can effectively stabilize gold NPs (AuNPs). The generality of this robust functionalization strategy was also demonstrated by coating of silver, platinum, and iron oxide NPs with designed peptoids. Each peptoid (PE) is designed with varied arrangements of a multivalent AuNP-binding domain and a solvation domain consisting of oligo-ethylene glycol (EG) branches. Among designs, a peptoid (PE5) with a diblock structure is demonstrated to provide a superior nanocolloidal stability in diverse aqueous solutions while forming a compact shell (∼1.5 nm) on the AuNP surface. We demonstrate by experiments and molecular dynamics simulations that PE5-coated AuNPs (PE5/AuNPs) are stable in select organic solvents owing to the strong PE5 (amine)-Au binding and solubility of the oligo-EG motifs. At the vapor-aqueous interface, we show that PE5/AuNPs remain stable and can self-assemble into ordered 2D lattices. The NP films exhibit strong near-field plasmonic coupling when transferred to solid substrates.


Subject(s)
Metal Nanoparticles , Nanostructures , Peptoids , Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Dynamics Simulation , Nanostructures/chemistry , Peptoids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...