Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Type of study
Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 6): 592-595, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34164133

ABSTRACT

In the title compound, formally K+·C6H16B-, the contact sphere of potassium consists of eleven hydrogen atoms from three different anions, assuming an arbitrary cut-off of 3 Å. The shortest inter-action, 2.53 (2) Å, involves the hydridic hydrogen H01, which fulfils a bridging function in the formation of chains of KHBEt3 units parallel to the a axis [K1-H01i 2.71 (2) Å, K1-H01-K1ii 126.7 (9)°, operators x∓1/2, -y + , -z + 1].

2.
Chemistry ; 26(68): 16098-16110, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-32735382

ABSTRACT

We report the preparation of enantiomerically pure constrained geometry complexes (cgc) of the rare-earth metals bearing a pentadienyl moiety (pdl) derived from the natural product (1R)-(-)-myrtenal. The potassium salt 1, [Kpdl*], was treated with ClSiMe2 NHtBu, and the resulting pentadiene 2 was deprotonated with the Schlosser-type base KOtPen/nBuLi (tPen=CMe2 (CH2 Me)) to yield the dipotassium salt [K2 (pdl*SiMe2 NtBu)] (3). However, 3 rearranges in THF solution to its isomer 3' by a 1,3-H shift, which elongates the bridge between the pdl and SiMe2 NtBu moieties by one CH2 unit. This is crucial for the successful formation of various monomeric C1 - or dimeric C2 -symmetric rare-earth cgc complexes with additional halide, tetraborohydride, amido and alkyl functionalities. All compounds have been extensively characterised by solid-state X-ray diffraction analysis, solution NMR spectroscopy and elemental analyses.

3.
Nat Chem ; 12(8): 740-746, 2020 08.
Article in English | MEDLINE | ID: mdl-32601410

ABSTRACT

Living systems carry out the reduction of N2 to ammonia (NH3) through a series of protonation and electron transfer steps under ambient conditions using the enzyme nitrogenase. In the chemical industry, the Haber-Bosch process hydrogenates N2 but requires high temperatures and pressures. Both processes rely on iron-based catalysts, but molecular iron complexes that promote the formation of NH3 on addition of H2 to N2 have remained difficult to devise. Here, we isolate the tri(iron)bis(nitrido) complex [(Cp'Fe)3(µ3-N)2] (in which Cp' = η5-1,2,4-(Me3C)3C5H2), which is prepared by reduction of [Cp'Fe(µ-I)]2 under an N2 atmosphere and comprises three iron centres bridged by two µ3-nitrido ligands. In solution, this complex reacts with H2 at ambient temperature (22 °C) and low pressure (1 or 4 bar) to form NH3. In the solid state, it is converted into the tri(iron)bis(imido) species, [(Cp'Fe)3(µ3-NH)2], by addition of H2 (10 bar) through an unusual solid-gas, single-crystal-to-single-crystal transformation. In solution, [(Cp'Fe)3(µ3-NH)2] further reacts with H2 or H+ to form NH3.

4.
Chemistry ; 25(70): 16148-16155, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31625641

ABSTRACT

The reaction of 1,2-dipiperidinoacetylene (1) with 0.5 equivalents of SnCl2 or GeCl2 ⋅dioxane afforded the 1,2,3,4-tetrapiperidino-1,3-cyclobutadiene tin and germanium dichloride complexes 2 a and 2 b, respectively. A competing redox reaction was observed with excess amounts of SnCl2 , which produced a tetrapiperidinocyclobutadiene dication with two trichlorostannate(II) counterions. Heating neat 1 to 110 °C for 16 h cleanly produced the dimer 1,3,4,4-tetrapiperidino-3-buten-1-yne (3); its reaction with stoichiometric amounts of SnCl2 or GeCl2 ⋅dioxane furnished the 1,3,4,4-tetrapiperidino-1,2-cyclobutadiene tin and germanium dichloride complexes 4 a and 4 b, respectively. Transition-metal complexes containing this novel four-membered cyclic bent allene (CBA) ligand were prepared by reaction of 3 with [(tht)AuCl], [RhCl(CO)2 ]2 , and [(Me3 N)W(CO)5 ] to form [(CBA)AuCl] (5), [(CBA)RhCl(CO)2 ] (6), and [(CBA)W(CO)5 ] (7). The molecular structures of all compounds 2-7 were determined by X-ray diffraction analyses, and density functional theory (DFT) calculations were carried out to rationalise the formation of 3 and 4 a.

5.
Dalton Trans ; 48(23): 8297-8302, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31106321

ABSTRACT

The enantiomerically pure pentadienyl (Pdl*) ligand derived from the natural product (1R)-(-)-myrtenal forms with MCl3 (M = La, Ce, Pr, and Nd) the corresponding homoleptic [(η5-U-Pdl*)3M compounds (1-M). These complexes were fully characterised by 1H NMR spectroscopy, elemental analyses and X-ray diffraction. They exhibit in solution and solid state idealized C3 symmetry, and their molecular structures also reveal that the Pdl* ligand adopts a U-conformation and coordinates exclusively with its less sterically encumbered face to the rare-earth metal atom. For the paramagnetic representatives an assignment of the 1H NMR resonances based on a simple dipolar model gave satisfactory results.

6.
Chem Commun (Camb) ; 54(98): 13798-13801, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30474658

ABSTRACT

A novel synthesis for dialkyl cobalt compounds [(tmeda)CoR2] is presented. In these complexes tmeda is readily replaced by an NHC or a bidentate phosphine ligand to form 3- and 4-coordinate compounds, respectively. [(ItBu)Co(CH2SiMe3)2] (ItBu = 1,3-di-tert-butylimidazolin-2-ylidene) serves as an efficient, homogeneous olefin hydrogenation pre-catalyst and allows the preparation of the novel cobalt bis(alkyne) complex [(ItBu)Co(η2-PhCCPh)2].

7.
Dalton Trans ; 47(41): 14468-14482, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30191925

ABSTRACT

The coordination chemistry of the sterically encumbered pentadienyl ligand pdl' (pdl' = 2,4-(Me3C)2C5H5) towards a series of rare-earth metals was systematically explored and the resulting metal complexes were fully characterized by several techniques including X-ray diffraction, elemental analysis, NMR spectroscopy and solid-state magnetic susceptibility studies. Three different reaction products were isolated depending on the redox-potentials and ionic radii of the metal atoms. They can be classified as (a) salt-metathesis, (b) metal reduction-ligand oxidation and (c) ligand deprotonation products. While for the larger and difficult to reduce metal ions, M = La, Ce, Pr and Nd, trivalent compounds [(η5-pdl')3M] (1-M) were isolated, for the more readily reduced metal ions the corresponding divalent compounds [[(η5-pdl')2M(thf)n] (2-M; with M = Sm (n = 2); Eu, Yb (n = 1)) were formed. A more complex structural motif was observed for the smaller and also difficult to reduce metal ions, M = Sc, Y, Gd, Tb, Dy, Ho, Er, Tm and Lu, which yielded the bimetallic complexes of the type [(pdl')(pdl'-1H)(pdl'-2H)M2(thf)2] (3-M). In these dimeric complexes the pdl' ligand acts as a result of deprotonation reactions not only as a monoanionic [pdl']-, but also as a dianionic [pdl'-1H]2- and a trianionic [pdl'-2H]3- ligand scaffold, which form unusual structural motifs including a six-membered metallacycle. Solid-state magnetic susceptibility studies revealed the expected free-ion magnetic moments at T = 300 K for all investigated compounds, whereas at lower temperatures crystal-field effects dominate. Furthermore, for 3-Gd, 3-Tb, 3-Dy and 3-Er weak ferromagnetic exchange interactions were observed at low temperature.

8.
Dalton Trans ; 47(31): 10517-10526, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-29924109

ABSTRACT

The half-sandwich complex [Cp'Fe(µ-I)]2 (1; Cp' = η5-1,2,4-(Me3C)3C5H2) is cleaved when heated in toluene to form a cation-anion pair [{Cp'Fe(η6-toluene)}+{Cp'FeI2}-] (2), in which the two Fe(ii) atoms adopt different spin states, i.e., a low-spin (S = 0) and a high-spin (S = 2) configuration. Upon oxidation of 1 with C2H4I2, the thermally stable 15VE species [Cp'FeI2] (3) can be isolated, in which the Fe(iii) atom adopts an intermediate spin (S = 3/2) configuration. Complex 3 is an excellent starting material for further functionalizations and it reacts with Mg(CH2SiMe3)2 to form the unprecedented Fe(iii) (S = 3/2) bis(alkyl) complex [Cp'Fe(CH2SiMe3)2] (4). The respective spin states of complexes 2-4 are confirmed by single-crystal X-ray crystallography, zero-field 57Fe Mössbauer spectroscopy, and solid-state magnetic susceptibility measurements. In contrast to the related 14VE high-spin (S = 2) Fe(ii) alkyl species [Cp'FeCH(SiMe3)2], which resists the reaction with H2 as a consequence of a spin-induced reaction barrier, complex 4 reacts cleanly with H2 (8 bar) in cyclohexane to yield iron hydrides [{Cp'Fe}2(µ-H)3] (5) and [Cp'Fe(µ-H)2]2 (6) in a 1 : 4 ratio. However, when the hydrogenation of 4 is carried out in benzene, a green 19VE [Cp'Fe(η6-C6H6)] (A) intermediate is formed, which dimerizes to the bis(cyclohexadienyl)-bridged product [(Cp'Fe)2(µ2-η5:η5-C12H12)] (7). Further evidence for the intermediacy of [Cp'Fe(η6-C6H6)] (A) was gathered by X-band EPR and UV/vis spectroscopy. Interestingly, attempts to oxidize 7 with AgSbF6 proceeded via C-C bond cleavage instead of metal oxidation to form [Cp'Fe(C6H6)][SbF6] (8).

9.
Chem Sci ; 8(9): 6274-6280, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989661

ABSTRACT

Since the first seminal report of boron-centred nucleophiles, the area of boryl anions has developed only sporadically and requires further systematisation. The boryl anions of type NHC-B(CN)2- (NHC = N-heterocyclic carbene) described herein complete a consistent series with the known anions cAAC-B(CN)2- [cAAC = cyclic(alkyl)(amino)carbene] and B(CN)32-. A novel approach towards NHC-stabilised cyanoboranes based on alkylthio-cyano exchange at boron is presented, and in contrast to other methods affords the products in better purity and yield. Reduction of suitable NHC-dicyanoboranes gave two unprecedented examples of NHC-B(CN)2- boryl anions. The latter were shown to react as boron-centred nucleophiles with facile formation of B-E bonds, where E = C, Si, Sn, P, Au. Bonding analysis by DFT calculations suggests a systematic variation of the energy of the boron-centred HOMO depending on the carbene, which in turn can control the nucleophilic character.

10.
Inorg Chem ; 56(17): 10785-10793, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28829597

ABSTRACT

Half-sandwich complexes of the N-heterocyclic carbene-phosphinidene adduct [(IPr)PH] (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) were prepared by its reaction with dimeric complexes of the type [LMCl2]2, which afforded the three-legged piano-stool complexes [LMCl2{HP(IPr)}] (9a/9b: M = Ru/Os, L = η6-p-cymene; 10a/10b: M = Rh/Ir, L = η5-C5Me5). Their conversion into the corresponding carbene-phosphinidenide complexes [LMCl{P(IPr)}] (11a/11b: M = Ru/Os; 12a/12b: M = Rh/Ir) with a two-legged piano stool geometry was studied by NMR spectroscopy in the presence of the strong base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). Alternatively, the complexes 11 and 12 were isolated in high yields from the reactions of the carbene-phosphinidene adduct [(IPr)PTMS] (2) with [LMCl2]2, whereby formation of the metal-phosphorus bonds was accompanied by elimination of trimethylsilyl chloride (Me3SiCl). Theoretical calculations reveal a strong polarization of the phosphorus ligands upon metal complexation, which can be ascribed to the ability of the imidazole moiety to effectively stabilize a positive charge. Dehydrohalogenation of complexes 9/10 to 11/12 affords a significant increase of the metal-phosphorus bond order, with the carbene-phosphinidenide ligand acting as a strong 2σ,2π-electron donor.

11.
Inorg Chem ; 56(14): 8415-8422, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28677977

ABSTRACT

The pyrrolyl-based iron pincer compounds [(tBuPNP)FeCl] (1), [(tBuPNP)FeN2] (2), and [(tBuPNP)Fe(CO)2] (3) were prepared and structurally characterized. In addition, their electronic ground states were probed by various techniques including solid-state magnetic susceptibility and zero-field 57Fe Mössbauer and X-band electron paramagnetic resonance spectroscopy. While the iron(II) starting material 1 adopts an intermediate-spin (S = 1) state, the iron(I) reduction products 2 and 3 exhibit a low-spin (S = 1/2) ground state. Consistent with an intermediate-spin configuration for 1, the zero-field 57Fe Mössbauer spectrum shows a characteristically large quadrupole splitting (ΔEQ ≈ 3.7 mm s-1), and the solid-state magnetic susceptibility data show pronounced zero-field splitting (|D| ≈ 37 cm-1). The effective magnetic moments observed for the iron(I) species 2 and 3 are larger than expected from the spin-only value and indicate an incompletely quenched orbital angular momentum and the presence of spin-orbit coupling in the ground state. The experimental findings are complemented by density functional theory computations, which are in good agreement with the experimental data. Most notably, these calculations reveal a low-lying (S = 2) excited state for complex 1; furthermore, the computed Mössbauer parameters for all complexes studied herein are in excellent agreement with the experimental findings.

12.
Chem Commun (Camb) ; 53(53): 7274-7277, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28393938

ABSTRACT

The 15-valence electron (VE), high-spin (S = 3/2) half-sandwich complex [Cp'Fe(IiPr2Me2)] (3; IiPr2Me2 = 1,3-di-iso-propyl-4,5-dimethylimidazol-2-yildene) reversibly coordinates N2 to form the 17VE, low-spin (S = 1/2) compound [Cp'Fe(IiPr2Me2)(η1-N2)] (4).

13.
Dalton Trans ; 46(14): 4737-4748, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28332672

ABSTRACT

The reactions of the molybdenum alkylidyne complex [MesC[triple bond, length as m-dash]Mo{OCMe(CF3)2}3] (1) with the diaminoacetylenes R2NC[triple bond, length as m-dash]CNR2 (2, NR2 = 4-methylpiperidinyl; 3, NR2 = NEt2; Mes = 2,4,6-trimethylphenyl) afforded the metallacyclobutadiene (MCBD) complexes 4 and 5. In contrast to all other MCBD complexes, 4 and 5 are paramagnetic and best described as Mo(iv) species containing an anionic diaminodicarbene of the type [(R2N)CC(Mes)C(NR2)]-.

14.
Chem Sci ; 8(5): 4108-4122, 2017 May 01.
Article in English | MEDLINE | ID: mdl-30155215

ABSTRACT

The iron half-sandwich [Cp'Fe(µ-I)]2 (Cp' = 1,2,4-(Me3C)3C5H2, 1) reacts with the pseudohalides NCO-, SCN-, SeCN- and N3- to give [Cp'Fe(µ-NCO)]2 (2), [Cp'Fe(µ-S)]2 (3), [Cp'Fe(µ-Se2)]2 (4) and [Cp'Fe(µ-N)]2 (5), respectively. Various spectroscopic techniques including X-ray diffraction, solid-state magnetic susceptibility studies and 57Fe Mössbauer spectroscopy were employed in the characterization of these species. Mössbauer spectroscopy shows a decreasing isomer shift with increasing formal oxidation state, ranging from Fe(ii) to Fe(iv), in complexes 1 to 5. The sulfido-bridged dimer 3 exhibits strong antiferromagnetic coupling between the Fe(iii) centers. This leads to temperature-independent paramagnetism (TIP) at low temperature, from which the energy gap between the ground and the excited state can be estimated to be 2J = ca. 700 cm-1. The iron(iv) nitrido complex [Cp'Fe(µ-N)]2 (5) shows no reactivity towards H2 (10 atm), but undergoes clean reactions with CO (5 bar) and XylNC (Xyl = 2,6-Me2C6H3) to form the diamagnetic isocyanate and carbodiimide complexes [Cp'Fe(CO)2(NCO)] (7) and [Cp'Fe(CNXyl)2(NCNXyl)] (8), respectively. All compounds were fully characterized, and density functional theory (DFT) computations provide useful insights into their formation and the electronic structures of complexes 3 and 5.

15.
Angew Chem Int Ed Engl ; 56(4): 1135-1140, 2017 01 19.
Article in English | MEDLINE | ID: mdl-27996186

ABSTRACT

The reaction of the 2-(trimethylsilyl)imidazolium triflate 9 with diarylboron halides (4-R-C6 H4 )2 BX (R=H, X=Br; R=CH3 , X=Cl; R=CF3 , X=Cl) afforded the NHC-stabilized borenium cations 10 a-c. Cyclic voltammetry revealed a linear correlation between the Hammett parameter σp of the para substituent and the half-wave potential. Chemical reduction with decamethylcobaltocene, [(C5 Me5 )2 Co], furnished the corresponding radicals 11 a-c; their characterization by EPR spectroscopy confirmed the paramagnetic character of 11 a-c, with large hyperfine coupling constants to the boron isotopes 11 B and 10 B, while delocalization of the unpaired electron into the NHC is negligible. DFT calculations of the percentage of spin density distribution between the carbene (NHC) and the boryl fragments (BR2 ) revealed for 11 a-c a spin density ratio (BR2 /NHC) of ca. 9:1, which underlines their distinct boryl radical character. The molecular structure of the most stable species 11 c was established by X-ray diffraction analysis.

16.
Inorg Chem ; 54(24): 12032-45, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26652203

ABSTRACT

The bis(imidazolin-2-imine) ligand N,N'-bis(1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene)-1,1'-ferrocenediamine, fc(NIm)2 (1) was prepared. Its reaction with [NiCl2(dme)] (dme = 1,2-dimethoxyethane) or [PdCl2(MeCN)2] afforded the tetrahedral, paramagnetic complex [(1-κ(2)N,N')NiCl2] (6a) or the diamagnetic, square-planar complex [(1-κ(2)N,N')PdCl2] (6b), respectively. For the latter, slow rearrangement to the ionic complex [(1-κFe,κ(2)N,N')PdCl]Cl, [7]Cl, was observed, which was followed by (1)H NMR and UV/vis spectroscopy. Treatment of [7]Cl with NaBF4 afforded [7]BF4; the palladium atoms in both cations adopt square-planar environments with short Fe-Pd bonds (ca. 2.65 Å). In addition, a series of dicationic complexes of the type [(1-κFe,κ(2)N,N')ML](BF4)2 (8a: M = Ni, L = MeCN; 8b: M = Pd, L = MeCN; 9a: M = Ni, L = PMe3; 9b: M = Pd, L = PMe3) was prepared from 6a (M = Ni) or [7]BF4 by chloride abstraction with NaBF4 or AgBF4 in the presence of acetonitrile or trimethylphosphine, respectively. In the presence of triphenylphosphine, the palladium(II) complex [(1-κFe,κ(2)N,N')Pd(PPh3)](BF4)2 (10) was isolated. Iron-nickel and iron-palladium bonding in these complexes was studied experimentally by NMR, UV/vis, and Mössbauer spectroscopy and by cyclic voltammetry. Detailed DFT calculations were carried out for the cations [(1-κFe,κ(2)N,N')M(MeCN)](2+) in the 8a/8b couple, with Bader's atoms in molecules theory revealing the presence of noncovalent, closed-shell metal-metal interactions. Potential energy surface scans with successive elongation of the Fe-M bonds allow an estimation of the iron-metal bond dissociation energies (BDE) as BDE(Fe-Ni) = 11.3 kcal mol(-1) and BDE(Fe-Pd) = 24.3 kcal mol(-1).

17.
Dalton Trans ; 44(39): 17346-59, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26387638

ABSTRACT

A series of novel Pd(ii) complexes with chelating mono(imidazolin-2-imine) and bis(imidazolin-2-imine) ligands were synthesized. The crystal structures of [Pd(DMEAIm(iPr))Cl2] and [Pd(DPENIm(iPr))Cl2] were determined by X-ray diffraction analysis. The reactivity of the six Pd(ii) complexes, namely, [Pd(en)Cl2], [Pd(EAIm(iPr))Cl2], [Pd(DMEAIm(iPr))Cl2], [Pd(DPENIm(iPr))Cl2], [Pd(BL(iPr))Cl2] and [Pd(DACH(Im(iPr))2)Cl2], were investigated. Spectrophotometric acid-base titrations were performed to determine the pKa values of the coordinated water molecules in [Pd(en)(H2O)2](2+), [Pd(EAIm(iPr))(H2O)2](2+), [Pd(DMEAIm(iPr))(H2O)2](2+), [Pd(DPENIm(iPr))(H2O)2](2+), [Pd(BL(iPr))(H2O)2](2+) and [Pd(DACH(Im(iPr))2)(H2O)2](2+). The substitution of the chloride ligands in these complexes by TU, l-Met, l-His and Gly was studied under pseudo-first-order conditions as a function of the nucleophile concentration and temperature using stopped-flow techniques; the sulfur-donor nucleophiles have shown better reactivity than nitrogen-donor nucleophiles. The obtained results indicate that there is a clear correlation between the nature of the imidazolin-2-imine ligands and the acid-base characteristics and reactivity of the resulting Pd(ii) complexes; the order of reactivity of the investigated Pd(ii) complexes is: [Pd(en)Cl2] > [Pd(EAIm(iPr))Cl2] > [Pd(DMEAIm(iPr))Cl2] > [Pd(DPENIm(iPr))Cl2] > [Pd(BL(iPr))Cl2] > [Pd(DACH(Im(iPr))2)Cl2]. The solubility measurements revealed good solubility of the studied imidazolin-2-imine complexes in water, despite the fact that these Pd(ii) complexes are neutral complexes. Based on the performed studies, three unusual features of the novel imidazolin-2-imine Pd(ii) complexes are observed, that is, good solubility in water, very low reactivity and high pKa values. The coordination geometries around the palladium atoms are distorted square-planar; the [Pd(DMEAIm(iPr))Cl2] complex displays Pd-N distances of 2.013(2) and 2.076(2) Å, while the [Pd(DPENIm(iPr))Cl2] complex displays similar Pd-N distances of 2.034(4) and 2.038(3) Å. The studied systems are of interest because little is known about the substitution behavior of imidazolin-2-imine Pd(ii) complexes with bio-molecules under physiological conditions.


Subject(s)
Imidazolidines/chemistry , Imines/chemistry , Palladium/chemistry , Imidazolidines/metabolism , Imines/metabolism , Palladium/metabolism , X-Ray Diffraction
18.
Dalton Trans ; 44(37): 16325-31, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26299415

ABSTRACT

The synthesis of C2 symmetric enantiomerically pure open Ca and Sr metallocenes, [(η(5)-pdl*)2Ca(thf)] (1) and [(η(5)-pdl*)2Sr(thf)2] (2) (pdl* = dimethylnopadienyl) is described and these complexes were fully characterized. The solid state structures confirm that the pdl* ligands coordinate exclusively with the less sterically demanding site to the Ca and Sr atoms. These complexes are active catalysts for the controlled ring opening polymerization (ROP) of rac-lactide to give heterotactically enriched polylactides (PL) with narrow polydispersities (PDI = 1.29-1.31) and without adding further activators.

19.
Eur J Med Chem ; 101: 431-41, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26185007

ABSTRACT

This work presents the synthesis, characterization and application of eleven new gold (I) complexes 13-23 with 1,2,4-oxadiazole-containing N-heterocyclic carbene (NHC) ligands and of the NHC silver(I) complex 24. The 1,2,4-oxadiazole unit, which can be found in a variety of biologically active natural products such as phidianidines or quisqualic acid, was incorporated, along with a variety of other biologically active moieties (anthracene, indole, 2-pyridine, 2,3,4,5-tetra-O-acetyl-D-glucopyranose, quincorine and quincoridine), in order to change the lipophilicity of the complexes, so that the transport of the active units (M-NHC) though the cell wall barrier is facilitated. The biological activity of the complexes was investigated. In vitro assessment of anti-tumor activity in a panel of 12 human tumor cell lines by a monolayer assay revealed impressive potency (mean IC50 < 0.1 µM) and tumor selectivity for 6 compounds, with individual IC50 values in the low nanomolar range. The solid state structures of compounds 13, 14, 15, 17, 18, 19 and 24 were determined by X-ray diffraction analyses.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Gold/chemistry , Heterocyclic Compounds/pharmacology , Methane/analogs & derivatives , Organometallic Compounds/pharmacology , Oxadiazoles/pharmacology , Silver/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Heterocyclic Compounds/chemistry , Humans , Methane/chemistry , Methane/pharmacology , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Oxadiazoles/chemistry , Structure-Activity Relationship
20.
Dalton Trans ; 44(20): 9400-8, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25912291

ABSTRACT

The reaction of the N-heterocyclic carbene 1,3-di-tert-butyl-4,5-dimethylimidazolin-2-ylidene () with trimethylsilyl iodide, triflate and triflimidate [Me3SiX, X = I, CF3SO3 (OTf), (CF3SO2)2N (NTf2)] by mixing the neat, liquid starting materials afforded the corresponding 2-(trimethylsilyl)imidazolium salts [()SiMe3]X as highly reactive, white crystalline solids. Only the triflimidate (X = NTf2) proved to be stable in solution and could be characterized by means of NMR spectroscopy (in C6D5Br) and X-ray diffraction analysis, whereas dissociation into free and Me3SiOTf was observed for the triflate system, in agreement with the trend derived by DFT calculations; the iodide was too insoluble for characterization. The compounds [()SiMe3]X showed the reactivity expected for frustrated carbene-silylium pairs, and treatment with carbon dioxide, tert-butyl isocyanate and diphenylbutadiyne gave the 1,2-addition products [()CO2SiMe3]X (X = I, OTf, NTf2), [()C(NtBu)OSiMe3]OTf and [()C(Ph)C(SiMe3)CCPh]OTf, respectively. Upon reaction with [AuCl(PPh3)], metal-chloride bond activation was observed, with formation of the cationic gold(i) complexes [()Au(PPh3)]X (X = OTf, NTf2).

SELECTION OF CITATIONS
SEARCH DETAIL