Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
EPJ Data Sci ; 11(1): 53, 2022.
Article in English | MEDLINE | ID: mdl-36406335

ABSTRACT

Place-based short-term crime prediction models leverage the spatio-temporal patterns of historical crimes to predict aggregate volumes of crime incidents at specific locations over time. Under the umbrella of the crime opportunity theory, that suggests that human mobility can play a role in crime generation, increasing attention has been paid to the predictive power of human mobility in place-based short-term crime models. Researchers have used call detail records (CDR), data from location-based services such as Foursquare or from social media to characterize human mobility; and have shown that mobility metrics, together with historical crime data, can improve short-term crime prediction accuracy. In this paper, we propose to use a publicly available fine-grained human mobility dataset from a location intelligence company to explore the effects of human mobility features on short-term crime prediction. For that purpose, we conduct a comprehensive evaluation across multiple cities with diverse demographic characteristics, different types of crimes and various deep learning models; and we show that adding human mobility flow features to historical crimes can improve the F1 scores for a variety of neural crime prediction models across cities and types of crimes, with improvements ranging from 2% to 7%. Our analysis also shows that some neural architectures can slightly improve the crime prediction performance when compared to non-neural regression models by at most 2%.

2.
PLoS Negl Trop Dis ; 16(7): e0010565, 2022 07.
Article in English | MEDLINE | ID: mdl-35857744

ABSTRACT

Timely, accurate, and comparative data on human mobility is of paramount importance for epidemic preparedness and response, but generally not available or easily accessible. Mobile phone metadata, typically in the form of Call Detail Records (CDRs), represents a powerful source of information on human movements at an unprecedented scale. In this work, we investigate the potential benefits of harnessing aggregated CDR-derived mobility to predict the 2015-2016 Zika virus (ZIKV) outbreak in Colombia, when compared to other traditional data sources. To simulate the spread of ZIKV at sub-national level in Colombia, we employ a stochastic metapopulation epidemic model for vector-borne diseases. Our model integrates detailed data on the key drivers of ZIKV spread, including the spatial heterogeneity of the mosquito abundance, and the exposure of the population to the virus due to environmental and socio-economic factors. Given the same modelling settings (i.e. initial conditions and epidemiological parameters), we perform in-silico simulations for each mobility network and assess their ability in reproducing the local outbreak as reported by the official surveillance data. We assess the performance of our epidemic modelling approach in capturing the ZIKV outbreak both nationally and sub-nationally. Our model estimates are strongly correlated with the surveillance data at the country level (Pearson's r = 0.92 for the CDR-informed network). Moreover, we found strong performance of the model estimates generated by the CDR-informed mobility networks in reproducing the local outbreak observed at the sub-national level. Compared to the CDR-informed networks, the performance of the other mobility networks is either comparatively similar or substantially lower, with no added value in predicting the local epidemic. This suggests that mobile phone data captures a better picture of human mobility patterns. This work contributes to the ongoing discussion on the value of aggregated mobility estimates from CDRs data that, with appropriate data protection and privacy safeguards, can be used for social impact applications and humanitarian action.


Subject(s)
Epidemics , Zika Virus Infection , Zika Virus , Animals , Colombia/epidemiology , Humans , Mosquito Vectors , Zika Virus Infection/epidemiology
3.
EPJ Data Sci ; 11(1): 22, 2022.
Article in English | MEDLINE | ID: mdl-35402140

ABSTRACT

Most of the studies related to human mobility are focused on intra-country mobility. However, there are many scenarios (e.g., spreading diseases, migration) in which timely data on international commuters are vital. Mobile phones represent a unique opportunity to monitor international mobility flows in a timely manner and with proper spatial aggregation. This work proposes using roaming data generated by mobile phones to model incoming and outgoing international mobility. We use the gravity and radiation models to capture mobility flows before and during the introduction of non-pharmaceutical interventions. However, traditional models have some limitations: for instance, mobility restrictions are not explicitly captured and may play a crucial role. To overtake such limitations, we propose the COVID Gravity Model (CGM), namely an extension of the traditional gravity model that is tailored for the pandemic scenario. This proposed approach overtakes, in terms of accuracy, the traditional models by 126.9% for incoming mobility and by 63.9% when modeling outgoing mobility flows.

4.
Nat Commun ; 12(1): 5379, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34508077

ABSTRACT

Probabilistic forecasts play an indispensable role in answering questions about the spread of newly emerged pathogens. However, uncertainties about the epidemiology of emerging pathogens can make it difficult to choose among alternative model structures and assumptions. To assess the potential for uncertainties about emerging pathogens to affect forecasts of their spread, we evaluated the performance 16 forecasting models in the context of the 2015-2016 Zika epidemic in Colombia. Each model featured a different combination of assumptions about human mobility, spatiotemporal variation in transmission potential, and the number of virus introductions. We found that which model assumptions had the most ensemble weight changed through time. We additionally identified a trade-off whereby some individual models outperformed ensemble models early in the epidemic, but on average the ensembles outperformed all individual models. Our results suggest that multiple models spanning uncertainty across alternative assumptions are necessary to obtain robust forecasts for emerging infectious diseases.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Epidemics/statistics & numerical data , Epidemiological Monitoring , Zika Virus Infection/epidemiology , Colombia/epidemiology , Data Interpretation, Statistical , Datasets as Topic , Forecasting/methods , Humans , Models, Statistical , Spatio-Temporal Analysis , Uncertainty
5.
R Soc Open Sci ; 6(11): 181640, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31827813

ABSTRACT

The compact city, as a sustainable concept, is intended to augment the efficiency of urban function. However, previous studies have concentrated more on morphology than on structure. The present study focuses on urban structural elements, i.e. urban hotspots consisting of high-density and high-intensity socioeconomic zones, and explores the economic performance associated with their spatial structure. We use night-time luminosity data and the Loubar method to identify and extract the hotspot and ultimately draw two conclusions. First, with population increasing, the hotspot number scales sublinearly with an exponent of approximately 0.50-0.55, regardless of the location in China, the EU or the USA, while the intersect values are totally different, which is mainly due to different economic developmental level. Secondly, we demonstrate that the compactness of hotspots imposes an inverted U-shaped influence on economic growth, which implies that an optimal compactness coefficient does exist. These findings are helpful for urban planning.

6.
Front Public Health ; 3: 189, 2015.
Article in English | MEDLINE | ID: mdl-26301211

ABSTRACT

The ubiquity of mobile phones worldwide is generating an unprecedented amount of human behavioral data both at an individual and aggregated levels. The study of this data as a rich source of information about human behavior emerged almost a decade ago. Since then, it has grown into a fertile area of research named computational social sciences with a wide variety of applications in different fields such as social networks, urban and transport planning, economic development, emergency relief, and, recently, public health. In this paper, we briefly describe the state of the art on using mobile phone data for public health, and present the opportunities and challenges that this kind of data presents for public health.

7.
Nat Commun ; 6: 6007, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25607690

ABSTRACT

The extraction of a clear and simple footprint of the structure of large, weighted and directed networks is a general problem that has relevance for many applications. An important example is seen in origin-destination matrices, which contain the complete information on commuting flows, but are difficult to analyze and compare. We propose here a versatile method, which extracts a coarse-grained signature of mobility networks, under the form of a 2 × 2 matrix that separates the flows into four categories. We apply this method to origin-destination matrices extracted from mobile phone data recorded in 31 Spanish cities. We show that these cities essentially differ by their proportion of two types of flows: integrated (between residential and employment hotspots) and random flows, whose importance increases with city size. Finally, the method allows the determination of categories of networks, and in the mobility case, the classification of cities according to their commuting structure.

8.
R Soc Open Sci ; 2(12): 150449, 2015 Dec.
Article in English | MEDLINE | ID: mdl-27019730

ABSTRACT

The advent of geolocated information and communication technologies opens the possibility of exploring how people use space in cities, bringing an important new tool for urban scientists and planners, especially for regions where data are scarce or not available. Here we apply a functional network approach to determine land use patterns from mobile phone records. The versatility of the method allows us to run a systematic comparison between Spanish cities of various sizes. The method detects four major land use types that correspond to different temporal patterns. The proportion of these types, their spatial organization and scaling show a strong similarity between all cities that breaks down at a very local scale, where land use mixing is specific to each urban area. Finally, we introduce a model inspired by Schelling's segregation, able to explain and reproduce these results with simple interaction rules between different land uses.

9.
PLoS One ; 9(8): e105184, 2014.
Article in English | MEDLINE | ID: mdl-25133549

ABSTRACT

The pervasive use of new mobile devices has allowed a better characterization in space and time of human concentrations and mobility in general. Besides its theoretical interest, describing mobility is of great importance for a number of practical applications ranging from the forecast of disease spreading to the design of new spaces in urban environments. While classical data sources, such as surveys or census, have a limited level of geographical resolution (e.g., districts, municipalities, counties are typically used) or are restricted to generic workdays or weekends, the data coming from mobile devices can be precisely located both in time and space. Most previous works have used a single data source to study human mobility patterns. Here we perform instead a cross-check analysis by comparing results obtained with data collected from three different sources: Twitter, census, and cell phones. The analysis is focused on the urban areas of Barcelona and Madrid, for which data of the three types is available. We assess the correlation between the datasets on different aspects: the spatial distribution of people concentration, the temporal evolution of people density, and the mobility patterns of individuals. Our results show that the three data sources are providing comparable information. Even though the representativeness of Twitter geolocated data is lower than that of mobile phone and census data, the correlations between the population density profiles and mobility patterns detected by the three datasets are close to one in a grid with cells of 2×2 and 1×1 square kilometers. This level of correlation supports the feasibility of interchanging the three data sources at the spatio-temporal scales considered.


Subject(s)
Environmental Monitoring/methods , Population Dynamics , Cell Phone , Humans , Remote Sensing Technology
10.
Sci Rep ; 4: 5276, 2014 Jun 13.
Article in English | MEDLINE | ID: mdl-24923248

ABSTRACT

Pervasive infrastructures, such as cell phone networks, enable to capture large amounts of human behavioral data but also provide information about the structure of cities and their dynamical properties. In this article, we focus on these last aspects by studying phone data recorded during 55 days in 31 Spanish cities. We first define an urban dilatation index which measures how the average distance between individuals evolves during the day, allowing us to highlight different types of city structure. We then focus on hotspots, the most crowded places in the city. We propose a parameter free method to detect them and to test the robustness of our results. The number of these hotspots scales sublinearly with the population size, a result in agreement with previous theoretical arguments and measures on employment datasets. We study the lifetime of these hotspots and show in particular that the hierarchy of permanent ones, which constitute the 'heart' of the city, is very stable whatever the size of the city. The spatial structure of these hotspots is also of interest and allows us to distinguish different categories of cities, from monocentric and "segregated" where the spatial distribution is very dependent on land use, to polycentric where the spatial mixing between land uses is much more important. These results point towards the possibility of a new, quantitative classification of cities using high resolution spatio-temporal data.

11.
Metab Brain Dis ; 26(3): 173-84, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21698453

ABSTRACT

Hepatic encephalopathy (HE) is normally diagnosed by neuropsychological (NP) tests. The goals of this study were to quantify cerebral metabolites, separate glutamate (Glu) from glutamine (Gln) in patients with minimal hepatic encephalopathy (MHE) as well as healthy subjects using the prior-knowledge fitting (ProFit) algorithm on data acquired by two-dimensional (2D) localized correlated spectroscopy (L-COSY) on two different MR scanners, and to correlate the metabolite changes with neuropsychological (NP) tests. We studied 14 MHE patients and 18 healthy controls using a GE 1.5 T Signa MR scanner. Another group of 16 MHE patients and 18 healthy controls were studied using a Siemens 1.5 T Avanto MR scanner. The following parameters were used for L-COSY: TR/TE = 2 s/30 ms, 3 × 3 × 3 cm(3) voxel size, 96 Δt(1) increments with 8 averages per Δt(1). Using the ProFit algorithm, we were able to differentiate Gln from Glu on the GE 1.5 T data in the medial frontal white/gray matter. The ratios of myo-inositol (mI), Glu, total choline, scyllo-inositol (sI), phosphoethanolamine (PE), and total N-acetyl aspartate (NAA) showed statistically significant decline in HE patients compared to healthy controls, while the ratio of Gln was significantly increased. Similar trend was seen in the ProFit quantified Siemens 1.5 T data in the frontal and occipito-parietal white/gray regions. Among the NP domain scores, motor function, cognitive speed, executive function and the global scores showed significant differences. Excellent correlations between various NP domains and metabolite ratios were also observed. ProFit based cerebral metabolite quantitation enhances the understanding and basis of the current hypothesis of MHE.


Subject(s)
Glutamic Acid/analysis , Glutamine/analysis , Hepatic Encephalopathy/metabolism , Magnetic Resonance Spectroscopy/methods , Adult , Biomarkers/metabolism , Brain/metabolism , Brain Chemistry , Case-Control Studies , Female , Hepatic Encephalopathy/pathology , Humans , Image Processing, Computer-Assisted/methods , Male , Metabolome , Middle Aged , Neuropsychological Tests , Sensitivity and Specificity
12.
AMIA Annu Symp Proc ; 2009: 266-70, 2009 Nov 14.
Article in English | MEDLINE | ID: mdl-20351862

ABSTRACT

A patient's electronic medical record can consist of a large number of reports, especially for an elderly patient or for one affected by a chronic disease. It can thus be cumbersome for a physician to go through all of the reports to understand the patient's complete medical history. This paper describes work in progress towards tracking medications and their dosages through the course of a patient's medical history. 923 reports associated with 11 patients were obtained from a university hospital. Drug names were identified using a dictionary look-up approach. Dosages corresponding to these drugs were determined using regular expressions. The state of a drug (ON, OFF), which determines whether or not the drug was being taken, was identified using a support vector machine with features based on expert knowledge. Results were promising: prec. approximately recall approximately 87%. The output is a timeline display of the drugs which the patient has been taking.


Subject(s)
Electronic Health Records , Information Storage and Retrieval/methods , Prescription Drugs , Humans , Prescription Drugs/administration & dosage , ROC Curve
SELECTION OF CITATIONS
SEARCH DETAIL