Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Fungal Biol Biotechnol ; 11(1): 4, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664850

ABSTRACT

BACKGROUND: Although Basidiomycota produce pharmaceutically and ecologically relevant natural products, knowledge of how they coordinate their primary and secondary metabolism is virtually non-existent. Upon transition from vegetative mycelium to carpophore formation, mushrooms of the genus Psilocybe use L-tryptophan to supply the biosynthesis of the psychedelic tryptamine alkaloid psilocybin with the scaffold, leading to a strongly increased demand for this particular amino acid as this alkaloid may account for up to 2% of the dry mass. Using Psilocybe mexicana as our model and relying on genetic, transcriptomic, and biochemical methods, this study investigated if L-tryptophan biosynthesis and degradation in P. mexicana correlate with natural product formation. RESULTS: A comparative transcriptomic approach of gene expression in P. mexicana psilocybin non-producing vegetative mycelium versus producing carpophores identified the upregulation of L-tryptophan biosynthesis genes. The shikimate pathway genes trpE1, trpD, and trpB (encoding anthranilate synthase, anthranilate phosphoribosyltransferase, and L-tryptophan synthase, respectively) were upregulated in carpophores. In contrast, genes idoA and iasA, encoding indole-2,3-dioxygenase and indole-3-acetaldehyde synthase, i.e., gateway enzymes for L-tryptophan-consuming pathways, were massively downregulated. Subsequently, IasA was heterologously produced in Escherichia coli and biochemically characterized in vitro. This enzyme represents the first characterized microbial L-tryptophan-preferring acetaldehyde synthase. A comparison of transcriptomic data collected in this study with prior data of Psilocybe cubensis showed species-specific differences in how L-tryptophan metabolism genes are regulated, despite the close taxonomic relationship. CONCLUSIONS: The upregulated L-tryptophan biosynthesis genes and, oppositely, the concomitant downregulated genes encoding L-tryptophan-consuming enzymes reflect a well-adjusted cellular system to route this amino acid toward psilocybin production. Our study has pilot character beyond the genus Psilocybe and provides, for the first time, insight in the coordination of mushroom primary and secondary metabolism.

2.
Commun Chem ; 6(1): 79, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095327

ABSTRACT

Macrotermitinae termites have farmed fungi in the genus Termitomyces as a food source for millions of years. However, the biochemical mechanisms orchestrating this mutualistic relationship are largely unknown. To deduce fungal signals and ecological patterns that relate to the stability of this symbiosis, we explored the volatile organic compound (VOC) repertoire of Termitomyces from Macrotermes natalensis colonies. Results show that mushrooms emit a VOC pattern that differs from mycelium grown in fungal gardens and laboratory cultures. The abundance of sesquiterpenoids from mushrooms allowed targeted isolation of five drimane sesquiterpenes from plate cultivations. The total synthesis of one of these, drimenol, and related drimanes assisted in structural and comparative analysis of volatile organic compounds (VOCs) and antimicrobial activity testing. Enzyme candidates putatively involved in terpene biosynthesis were heterologously expressed and while these were not involved in the biosynthesis of the complete drimane skeleton, they catalyzed the formation of two structurally related monocyclic sesquiterpenes named nectrianolins.

3.
ISME J ; 17(5): 733-747, 2023 05.
Article in English | MEDLINE | ID: mdl-36841903

ABSTRACT

Characterizing ancient clades of fungal symbionts is necessary for understanding the evolutionary process underlying symbiosis development. In this study, we investigated a distinct subgeneric taxon of Xylaria (Xylariaceae), named Pseudoxylaria, whose members have solely been isolated from the fungus garden of farming termites. Pseudoxylaria are inconspicuously present in active fungus gardens of termite colonies and only emerge in the form of vegetative stromata, when the fungus comb is no longer attended ("sit and wait" strategy). Insights into the genomic and metabolic consequences of their association, however, have remained sparse. Capitalizing on viable Pseudoxylaria cultures from different termite colonies, we obtained genomes of seven and transcriptomes of two Pseudoxylaria isolates. Using a whole-genome-based comparison with free-living members of the genus Xylaria, we document that the association has been accompanied by significant reductions in genome size, protein-coding gene content, and reduced functional capacities related to oxidative lignin degradation, oxidative stress responses and secondary metabolite production. Functional studies based on growth assays and fungus-fungus co-cultivations, coupled with isotope fractionation analysis, showed that Pseudoxylaria only moderately antagonizes growth of the termite food fungus Termitomyces, and instead extracts nutrients from the food fungus biomass for its own growth. We also uncovered that Pseudoxylaria is still capable of producing structurally unique metabolites, which was exemplified by the isolation of two novel metabolites, and that the natural product repertoire correlated with antimicrobial and insect antifeedant activity.


Subject(s)
Isoptera , Animals , Isoptera/microbiology , Biological Evolution , Acclimatization , Symbiosis/genetics , Fungi/genetics , Agriculture
4.
Chembiochem ; 23(14): e202200249, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35583969

ABSTRACT

Psilocybe magic mushrooms are best known for their main natural product, psilocybin, and its dephosphorylated congener, the psychedelic metabolite psilocin. Beyond tryptamines, the secondary metabolome of these fungi is poorly understood. The genomes of five species (P. azurescens, P. cubensis, P. cyanescens, P. mexicana, and P. serbica) were browsed to understand more profoundly common and species-specific metabolic capacities. The genomic analyses revealed a much greater and yet unexplored metabolic diversity than evident from parallel chemical analyses. P. cyanescens and P. mexicana were identified as aeruginascin producers. Lumichrome and verpacamide A were also detected as Psilocybe metabolites. The observations concerning the potential secondary metabolome of this fungal genus support pharmacological and toxicological efforts to find a rational basis for yet elusive phenomena, such as paralytic effects, attributed to consumption of some magic mushrooms.


Subject(s)
Biological Products , Hallucinogens , Psilocybe , Hallucinogens/analysis , Psilocybe/genetics
5.
mSystems ; 7(1): e0121421, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35014870

ABSTRACT

Macrotermitinae termites have domesticated fungi of the genus Termitomyces as food for their colony, analogously to human farmers growing crops. Termites propagate the fungus by continuously blending foraged and predigested plant material with fungal mycelium and spores (fungus comb) within designated subterranean chambers. To test the hypothesis that the obligate fungal symbiont emits specific volatiles (odor) to orchestrate its life cycle and symbiotic relations, we determined the typical volatile emission of fungus comb biomass and Termitomyces nodules, revealing α-pinene, camphene, and d-limonene as the most abundant terpenes. Genome mining of Termitomyces followed by gene expression studies and phylogenetic analysis of putative enzymes related to secondary metabolite production encoded by the genomes uncovered a conserved and specific biosynthetic repertoire across strains. Finally, we proved by heterologous expression and in vitro enzymatic assays that a highly expressed gene sequence encodes a rare bifunctional mono-/sesquiterpene cyclase able to produce the abundant comb volatiles camphene and d-limonene. IMPORTANCE The symbiosis between macrotermitinae termites and Termitomyces is obligate for both partners and is one of the most important contributors to biomass conversion in the Old World tropic's ecosystems. To date, research efforts have dominantly focused on acquiring a better understanding of the degradative capabilities of Termitomyces to sustain the obligate nutritional symbiosis, but our knowledge of the small-molecule repertoire of the fungal cultivar mediating interspecies and interkingdom interactions has remained fragmented. Our omics-driven chemical, genomic, and phylogenetic study provides new insights into the volatilome and biosynthetic capabilities of the evolutionarily conserved fungal genus Termitomyces, which allows matching metabolites to genes and enzymes and, thus, opens a new source of unique and rare enzymatic transformations.


Subject(s)
Isoptera , Termitomyces , Animals , Humans , Termitomyces/genetics , Phylogeny , Ecosystem , Limonene/metabolism , Odorants , Genomics
6.
iScience ; 24(6): 102680, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34189441

ABSTRACT

Insights into the genomic consequences of symbiosis for basidiomycete fungi associated with social insects remain sparse. Capitalizing on viability of spores from centuries-old herbarium specimens of free-living, facultative, and specialist termite-associated Podaxis fungi, we obtained genomes of 10 specimens, including two type species described by Linnaeus >240 years ago. We document that the transition to termite association was accompanied by significant reductions in genome size and gene content, accelerated evolution in protein-coding genes, and reduced functional capacities for oxidative stress responses and lignin degradation. Functional testing confirmed that termite specialists perform worse under oxidative stress, while all lineages retained some capacity to cleave lignin. Mitochondrial genomes of termite associates were significantly larger; possibly driven by smaller population sizes or reduced competition, supported by apparent loss of certain biosynthetic gene clusters. Our findings point to relaxed selection that mirrors genome traits observed among obligate endosymbiotic bacteria of many insects.

7.
RSC Adv ; 11(31): 18748-18756, 2021 May 24.
Article in English | MEDLINE | ID: mdl-34046176

ABSTRACT

Targeted HRMS2-GNPS-based metabolomic analysis of Pseudoxylaria sp. X187, a fungal antagonist of the fungus-growing termite symbiosis, resulted in the identification of two lipopeptidic congeners of xylacremolides, named xylacremolide C and D, which are built from d-phenylalanine, l-proline and an acetyl-CoA starter unit elongated by four malonyl-CoA derived ketide units. The putative xya gene cluster was identified from a draft genome generated by Illumina and PacBio sequencing and RNAseq studies. Biological activities of xylacremolide A and B were evaluated and revealed weak histone deacetylase inhibitory (HDACi) and antifungal activities, as well as moderate protease inhibition activity across a panel of nine human, viral and bacterial proteases.

8.
J Nat Prod ; 84(4): 1403-1408, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33667102

ABSTRACT

A novel analogue of psilocybin was produced by hybrid chemoenzymatic synthesis in sufficient quantity to enable bioassay. Utilizing purified 4-hydroxytryptamine kinase from Psilocybe cubensis, chemically synthesized 5-methylpsilocin (2) was enzymatically phosphorylated to provide 5-methylpsilocybin (1). The zwitterionic product was isolated from the enzymatic step with high purity utilizing a solvent-antisolvent precipitation approach. Subsequently, 1 was tested for psychedelic-like activity using the mouse head-twitch response assay, which indicated activity that was more potent than the psychedelic dimethyltryptamine, but less potent than that of psilocybin.


Subject(s)
Hallucinogens/chemical synthesis , Psilocybin/chemical synthesis , Tryptamines/chemical synthesis , Animals , Mice , Molecular Structure , Psilocybe , Psilocybin/analogs & derivatives
9.
Chemistry ; 26(37): 8281-8285, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32101345

ABSTRACT

Psilocybin, the principal indole alkaloid of Psilocybe mushrooms, is currently undergoing clinical trials as a medication against treatment-resistant depression and major depressive disorder. The psilocybin supply for pharmaceutical purposes is met by synthetic chemistry. We replaced the problematic phosphorylation step during synthesis with the mushroom kinase PsiK. This enzyme was biochemically characterized and used to produce one gram of psilocybin from psilocin within 20 minutes. We also describe a pilot-scale protocol for recombinant PsiK that yielded 150 mg enzyme in active and soluble form. Our work consolidates the simplicity of tryptamine chemistry with the specificity and selectivity of enzymatic catalysis and helps provide access to an important drug at potentially reasonable cost.


Subject(s)
Agaricales/chemistry , Depressive Disorder, Major/drug therapy , Psilocybe/chemistry , Psilocybin/analogs & derivatives , Psilocybin/chemistry , Tryptamines/chemistry , Biocatalysis , Humans , Psilocybin/biosynthesis , Tryptamines/metabolism
10.
Chembiochem ; 21(9): 1364-1371, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31802575

ABSTRACT

Psychotropic Psilocybe mushrooms biosynthesize their principal natural product psilocybin in five steps, among them a phosphotransfer and two methyltransfer reactions, which consume one equivalent of 5'-adenosine triphosphate (ATP) and two equivalents of S-adenosyl-l-methionine (SAM). This short but co-substrate-intensive pathway requires nucleoside cofactor salvage to maintain high psilocybin production rates. We characterized the adenosine kinase (AdoK) and S-adenosyl-l-homocysteine (SAH) hydrolase (SahH) of Psilocybe cubensis. Both enzymes are directly or indirectly involved in regenerating SAM. qRT-PCR expression analysis revealed an induced expression of the genes in the fungal primordia and carpophores. A one-pot in vitro reaction with the N-methyltransferase PsiM of the psilocybin pathway demonstrates a concerted action with SahH to facilitate biosynthesis by removal of accumulating SAH.


Subject(s)
Adenosine Kinase/metabolism , Adenosine/metabolism , Adenosylhomocysteinase/metabolism , Psilocybe/enzymology , Psilocybin/biosynthesis , S-Adenosylmethionine/metabolism , Adenosine Kinase/genetics , Adenosylhomocysteinase/genetics , Gene Expression Profiling , Psilocybe/genetics
11.
Chemistry ; 26(3): 729-734, 2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31729089

ABSTRACT

The psychotropic effects of Psilocybe "magic" mushrooms are caused by the l-tryptophan-derived alkaloid psilocybin. Despite their significance, the secondary metabolome of these fungi is poorly understood in general. Our analysis of four Psilocybe species identified harmane, harmine, and a range of other l-tryptophan-derived ß-carbolines as their natural products, which was confirmed by 1D and 2D NMR spectroscopy. Stable-isotope labeling with 13 C11 -l-tryptophan verified the ß-carbolines as biosynthetic products of these fungi. In addition, MALDI-MS imaging showed that ß-carbolines accumulate toward the hyphal apices. As potent inhibitors of monoamine oxidases, ß-carbolines are neuroactive compounds and interfere with psilocybin degradation. Therefore, our findings represent an unprecedented scenario of natural product pathways that diverge from the same building block and produce dissimilar compounds, yet contribute directly or indirectly to the same pharmacological effects.


Subject(s)
Agaricales/metabolism , Alkaloids/chemistry , Carbolines/chemistry , Monoamine Oxidase Inhibitors/chemistry , Monoamine Oxidase/metabolism , Psilocybin/chemistry , Tryptophan/chemistry , Agaricales/chemistry , Monoamine Oxidase/chemistry
12.
Chembiochem ; 20(22): 2824-2829, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31150155

ABSTRACT

Psilocybin and its direct precursor baeocystin are indole alkaloids of psychotropic Psilocybe mushrooms. The pharmaceutical interest in psilocybin as a treatment option against depression and anxiety is currently being investigated in advanced clinical trials. Here, we report a biocatalytic route to synthesize 6-methylated psilocybin and baeocystin from 4-hydroxy-6-methyl-l-tryptophan, which was decarboxylated and phosphorylated by the Psilocybe cubensis biosynthesis enzymes PsiD and PsiK. N-Methylation was catalyzed by PsiM. We further present an in silico structural model of PsiM that revealed a well-conserved SAM-binding core along with peripheral nonconserved elements that likely govern substrate preferences.


Subject(s)
Alkaloids/chemical synthesis , Indoles/chemical synthesis , Methyltransferases/chemistry , Organophosphates/chemical synthesis , Psilocybin/analogs & derivatives , Psilocybin/chemical synthesis , Bacterial Proteins/chemistry , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Methylation , Methyltransferases/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Binding , Psilocybe/enzymology , S-Adenosylmethionine/metabolism , Salmonella enterica/enzymology , Tryptophan Synthase/chemistry
13.
Chemistry ; 25(4): 897-903, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30011099

ABSTRACT

The fungal genus Psilocybe and other genera comprise numerous mushroom species that biosynthesize psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine). It represents the prodrug to its dephosphorylated psychotropic analogue, psilocin. The colloquial term "magic mushrooms" for these fungi alludes to their hallucinogenic effects and to their use as recreational drugs. However, clinical trials have recognized psilocybin as a valuable candidate to be developed into a medication against depression and anxiety. We here highlight its recently elucidated biosynthesis, the concurrently developed concept of enzymatic in vitro and heterologous in vivo production, along with previous synthetic routes. The prospect of psilocybin as a promising therapeutic may entail an increased demand, which can be met by biotechnological production. Therefore, we also briefly touch on psilocybin's therapeutic relevance and pharmacology.

14.
Chembiochem ; 19(20): 2160-2166, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30098085

ABSTRACT

Psilocybe mushrooms are best known for their l-tryptophan-derived psychotropic alkaloid psilocybin. Dimethylation of norbaeocystin, the precursor of psilocybin, by the enzyme PsiM is a critical step during the biosynthesis of psilocybin. However, the "magic" mushroom Psilocybe serbica also mono- and dimethylates l-tryptophan, which is incompatible with the specificity of PsiM. Here, a second methyltransferase, TrpM, was identified and functionally characterized. Mono- and dimethylation activity on l-tryptophan was reconstituted in vitro, whereas tryptamine was rejected as a substrate. Therefore, we describe a second l-tryptophan-dependent pathway in Psilocybe that is not part of the biosynthesis of psilocybin. TrpM is unrelated to PsiM but originates from a retained ancient duplication event of a portion of the egtDB gene that encodes an ergothioneine biosynthesis enzyme. During mushroom evolution, this duplicated gene was widely lost but re-evolved sporadically and independently in various genera. We propose a new secondary metabolism evolvability mechanism, in which weakly selected genes are retained through preservation in a widely distributed, conserved pathway.


Subject(s)
Methyltransferases/metabolism , Psilocybe/metabolism , Psilocybin/metabolism , Tryptophan/metabolism , Evolution, Molecular , Methylation , Methyltransferases/genetics , Psilocybe/classification , Substrate Specificity , Tryptamines/metabolism
15.
Chemistry ; 24(40): 10028-10031, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29750381

ABSTRACT

Psilocybin (4-phosphoryloxy-N,N-dimethyltryptamine) is the main alkaloid of the fungal genus Psilocybe, the so-called "magic mushrooms." The pharmaceutical interest in this psychotropic natural product as a future medication to treat depression and anxiety is strongly re-emerging. Here, we present an enhanced enzymatic route of psilocybin production by adding TrpB, the tryptophan synthase of the mushroom Psilocybe cubensis, to the reaction. We capitalized on its substrate flexibility and show psilocybin formation from 4-hydroxyindole and l-serine, which are less cost-intensive substrates, compared to the previous method. Furthermore, we show enzymatic production of 7-phosphoryloxytryptamine (isonorbaeocystin), a non-natural congener of the Psilocybe alkaloid norbaeocystin (4-phosphoryloxytryptamine), and of serotonin (5-hydroxytryptamine) by means of the same in vitro approach.

16.
Metab Eng ; 48: 44-51, 2018 07.
Article in English | MEDLINE | ID: mdl-29842926

ABSTRACT

Heterologous expression of multi-gene biosynthetic pathways in eukaryotic hosts is limited by highly regulated individual monocistrons. Dissimilar to prokaryotes, each eukaryotic gene is strictly controlled by its own regulatory elements, such as promoter and terminator. Consequently, parallel transcription can occur only when a group of genes is synchronously activated. A strategy to circumvent this limitation is the concerted expression of multiple genes as a polycistron. By exploiting the "stop-carry on" mechanism of picornaviruses, we have designed a sophisticated, yet easy-to-assemble vector system to heterologously express multiple genes under the control of a single promoter. For facile selection of correctly transformed colonies by basic fluorescence microscopy, our vector includes a split gene for a fluorescent reporter protein. This method was successfully applied to produce the psychotropic mushroom alkaloid psilocybin in high yields by heterologous expression of the entire biosynthetic gene cluster in the mould Aspergillus nidulans.


Subject(s)
Aspergillus nidulans , Gene Expression , Genes, Reporter , Genetic Engineering/methods , Green Fluorescent Proteins , Promoter Regions, Genetic , Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Fluorescence , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Psilocybin/biosynthesis , Psilocybin/genetics
17.
Angew Chem Int Ed Engl ; 56(40): 12352-12355, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28763571

ABSTRACT

Psilocybin is the psychotropic tryptamine-derived natural product of Psilocybe carpophores, the so-called "magic mushrooms". Although its structure has been known for 60 years, the enzymatic basis of its biosynthesis has remained obscure. We characterized four psilocybin biosynthesis enzymes, namely i) PsiD, which represents a new class of fungal l-tryptophan decarboxylases, ii) PsiK, which catalyzes the phosphotransfer step, iii) the methyltransferase PsiM, catalyzing iterative N-methyl transfer as the terminal biosynthetic step, and iv) PsiH, a monooxygenase. In a combined PsiD/PsiK/PsiM reaction, psilocybin was synthesized enzymatically in a step-economic route from 4-hydroxy-l-tryptophan. Given the renewed pharmaceutical interest in psilocybin, our results may lay the foundation for its biotechnological production.


Subject(s)
Aromatic-L-Amino-Acid Decarboxylases/metabolism , Hallucinogens/metabolism , Methyltransferases/metabolism , Mixed Function Oxygenases/metabolism , Psilocybe/enzymology , Psilocybin/biosynthesis , 5-Hydroxytryptophan/chemistry , Catalysis , Chromatography, Liquid/methods , Genes, Fungal , Mass Spectrometry/methods , Psilocybe/genetics , S-Adenosylmethionine/metabolism , Substrate Specificity
18.
Fungal Genet Biol ; 98: 12-19, 2017 01.
Article in English | MEDLINE | ID: mdl-27903443

ABSTRACT

The prenylphenols are a class of natural products that have been frequently isolated from basidiomycetes, e.g., from the genus Stereum (false turkey tail fungi) and other Russulales as well as from ascomycetes. Biosynthetically, these compounds are considered hybrids, as the orsellinic acid moiety is a polyketide and the prenyl side chain originates from the terpene metabolism, although no literature on the genetic and biochemical background of the biosynthesis is available. In a stereaceous basidiomycete, referred to as BY1, a new prenylphenol, now termed cloquetin, was identified and its structure elucidated by mass spectrometry and nuclear magnetic resonance spectroscopy. Genes for two non-reducing polyketide synthases (PKS1 and PKS2) were identified in the BY1 genome, and heterologously expressed in Aspergillus niger. Product formation identified both PKSs as orsellinic acid synthases. A putative prenyltransferase gene (BYPB) found in the BY1 genome was expressed in Escherichia coli. In vitro characterization showed that BYPB activity depends on bivalent cations and that it uses orsellinic acid as acceptor substrate for the transfer of a prenyl group. The two orsellinic acid synthases support the emerging notion that fungi secure individual metabolic steps or entire pathways by redundant enzymes.


Subject(s)
Basidiomycota/metabolism , Dimethylallyltranstransferase/genetics , Prenylation/genetics , Resorcinols/metabolism , Aspergillus niger/genetics , Basidiomycota/genetics , Escherichia coli/genetics , Genome, Fungal , Polyketide Synthases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...