Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731851

ABSTRACT

COVID-19 is characterized by a wide range of clinical manifestations, where aging, underlying diseases, and genetic background are related to worse outcomes. In the present study, the differential expression of seven genes related to immunity, IRF9, CCL5, IFI6, TGFB1, IL1B, OAS1, and TFRC, was analyzed in individuals with COVID-19 diagnoses of different disease severities. Two-step RT-qPCR was performed to determine the relative gene expression in whole-blood samples from 160 individuals. The expression of OAS1 (p < 0.05) and IFI6 (p < 0.05) was higher in moderate hospitalized cases than in severe ones. Increased gene expression of OAS1 (OR = 0.64, CI = 0.52-0.79; p = 0.001), IRF9 (OR = 0.581, CI = 0.43-0.79; p = 0.001), and IFI6 (OR = 0.544, CI = 0.39-0.69; p < 0.001) was associated with a lower risk of requiring IMV. Moreover, TGFB1 (OR = 0.646, CI = 0.50-0.83; p = 0.001), CCL5 (OR = 0.57, CI = 0.39-0.83; p = 0.003), IRF9 (OR = 0.80, CI = 0.653-0.979; p = 0.03), and IFI6 (OR = 0.827, CI = 0.69-0.991; p = 0.039) expression was associated with patient survival. In conclusion, the relevance of OAS1, IRF9, and IFI6 in controlling the viral infection was confirmed.


Subject(s)
2',5'-Oligoadenylate Synthetase , COVID-19 , Interferon-Stimulated Gene Factor 3, gamma Subunit , SARS-CoV-2 , Humans , 2',5'-Oligoadenylate Synthetase/genetics , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Male , Female , Middle Aged , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Nuclear Proteins/genetics , Adult , Aged , Mitochondrial Proteins
3.
Heliyon ; 10(7): e28675, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571598

ABSTRACT

The receptor for advanced glycation end products (RAGE) and its gene (AGER) have been related to lung injury and inflammatory diseases, including chronic obstructive pulmonary disease (COPD). We aimed to evaluate the association of rs2071288, rs3134940, rs184003, and rs2070600 AGER single-nucleotide variants and the soluble-RAGE plasma and sputum levels with COPD secondary to biomass-burning smoke (BBS) and tobacco smoking. Four groups, including 2189 subjects, were analyzed: COPD secondary to BBS exposure (COPD-BBS, n = 342), BBS-exposed subjects without COPD (BBES, n = 774), tobacco smoking-induced COPD (COPD-TS, n = 434), and smokers without COPD (SWOC, n = 639). Allelic discrimination assays determined the AGER variants. The sRAGE was quantified in plasma (n = 240) and induced-sputum (n = 72) samples from a subgroup of patients using the ELISA technique. In addition, a meta-analysis was performed for the association of rs2070600 with COPD susceptibility. None of the studied genetic variants were found to be associated with COPD-BBS or COPD-TS. A marginal association was observed for the rs3134940 with COPD-BBS (p = 0.066). The results from the meta-analysis, including six case-control studies (n = 4149 subjects), showed a lack of association of rs2070600 with COPD susceptibility (p = 0.681), probably due to interethnic differences. The sRAGE plasma levels were lower in COPD-BBS compared to BBS and in COPD-TS compared to SWOC. The sRAGE levels were also lower in sputum samples from COPD-BBS than BBES. Subjects with rs3134940-TC genotypes exhibit lower sRAGE plasma levels than TT subjects, mainly from the COPD-BBS and SWOC groups. The AGER variants were not associated with COPD-BBS nor COPD-TS, but the sRAGE plasma and sputum levels are related to both COPD-BBS and COPD-TS and are influenced by the rs3134940 variant.

4.
Heliyon ; 10(8): e29493, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628728

ABSTRACT

Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of Coronavirus Disease 2019 (COVID-19). The disease has a wide range of clinical manifestations, from asymptomatic to severe. Ancestral contribution, sex, immune response, and genetic factors influence the presentation of the disease. The objective of the present study was to validate these genetic variants in patients with severe COVID-19 who died and in survivor patients. Methods: Single nucleotide variants (SNVs) in six genes: ATPase plasma membrane Ca2+ transporting 2 (ATP2B2), transmembrane serine protease 2 (TMPRSS2), dedicator of cytokinesis 2 (DOCK2), (interferon alpha and beta receptor subunit 2) IFNAR2, tumor necrosis factor receptor superfamily, member 1A (TNFRSF1A), and tumor necrosis factor receptor superfamily, member 1B (TNFRSF1B), were explored in two groups: the first consisted of severe COVID-19-related patients (familial cases from 58 families, n = 130), and the second group of unrelated severe COVID-19 patients (n = 1045). In each study group, death was evaluated as the outcome. Results: In non-related patients with severe COVID-19, carriers of GG genotype (rs2289274) in the ATP2B2 gene showed a high-risk probability of non-surviving (OR = 1.43). Survival analysis to 75 days indicates that carriers of GG have a higher risk than GA or AA genotypes (p = 0.0059). The haplotype GG (rs2289273-rs2289274) in ATP2B2 was found to be associated with a high risk of death in severe non-related COVID-19 patients. No significant associations were found between severe COVID-19-related patients and SNVs in ATP2B2, TMPRSS2, DOCK2, IFNAR2, TNFRSF1A, or TNFRSF1B. Conclusions: Unrelated patients with severe COVID-19 that carry the GG genotype (rs2289274) in ATP2B2 showed a high death risk. Survival analysis to 75 days indicates that carriers of GG have a higher risk of non-survival compared to GA or AA genotypes.

5.
Heliyon ; 10(6): e27997, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38524554

ABSTRACT

Background: Enzymes of the peptidylarginine deiminase family (PADs) play a relevant role in the pathogenesis of COVID-19. However, the association of single nucleotide polymorphisms (SNPs) in their genes with COVID-19 severity and death is unknown. Methodology: We included 1045 patients who were diagnosed with COVID-19 between October 2020 and December 2021. All subjects were genotyped for PADI2 (rs1005753 and rs2235926) and PADI4 (rs11203366, rs11203367, and rs874881) SNPs by TaqMan assays and their associations with disease severity, death, and inflammatory biomarkers were evaluated. Results: 291 patients presented had severe COVID-19 according to PaO2/FiO2, and 393 had a non-survival outcome. Carriers of the rs1005753 G/G genotype in the PADI2 gene presented susceptibility for severe COVID-19, while the heterozygous carriers in rs11203366, rs11203367, and rs874881 of the PADI4 gene showed risk of death. The GTACC haplotype in PADI2-PADI4 was associated with susceptibility to severe COVID-19, while the GCACC haplotype was a protective factor. The GCGTG haplotype was associated with severe COVID-19 but as a protective haplotype for death. Finally, the GTACC haplotype was associated with platelet-to-lymphocyte ratio (PLR), the GCACC haplotype with neutrophil-to-hemoglobin and lymphocyte and the GCGTG haplotype as a protective factor for the elevation of procalcitonin, D-dimer, CRP, LCRP, NHL, SII, NLR, and PLR. Conclusions: Our results suggest that the haplotypic combination of GTACC and some individual genotypes of PADI2 and PADI4 contribute to the subjects' susceptibility for severity and death by COVID-19.

6.
Int J Infect Dis ; 138: 102-109, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029833

ABSTRACT

OBJECTIVES: We investigated the expression of toll-like receptor (TLR)-4 on the cell surface of innate and adaptive cells from patients with COVID-19 carrying the rs4986790 GG genotype in the TLR4 gene and the functional profile of these cells. METHODS: We included 1169 hospitalized patients with COVID-19. The rs4986790 in TLR4 was identified by real-time polymerase chain reaction. Peripheral blood mononuclear cells were isolated and cultured to evaluate TLR-4 expression on immune cells. Supernatants recovered culture assays were stored, and we measured cytokines and cytotoxic molecules. RESULTS: We showed that the rs4986790 (GG) was significantly associated (P = 0.0310) with severe COVID-19. Cells of patients with COVID-19 carrying the GG genotype have increased the frequency of monocytes and activated naïve and non-switched B cells positive to TLR-4 when cells are stimulated with lipopolysaccharide and with spike protein of SARS-CoV-2. Also, cells from patients with GG COVID-19 cannot produce pro-inflammatory cytokines after lipopolysaccharide stimulus, but they are high producers of cytotoxic molecules at baseline. CONCLUSIONS: The rs4986790 GG genotype of the TLR4 is associated with the risk of COVID-19 and acute respiratory distress syndrome. Peripheral blood mononuclear cells of patients carrying the rs4986790 (TLR4) GG genotype had a limited delivery of pro-inflammatory cytokines compared to the AA and AG genotypes in which TLR-4 stimulation induces IL-10, IL-6, tumor necrosis factor-α, and Fas ligand production.


Subject(s)
COVID-19 , Toll-Like Receptor 4 , Humans , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides , SARS-CoV-2/metabolism , Toll-Like Receptor 4/genetics , Genotype , Severity of Illness Index
7.
Drug Metab Pers Ther ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38053233
9.
Pharmacogenomics ; 24(9): 489-492, 2023 06.
Article in English | MEDLINE | ID: mdl-37529900

ABSTRACT

The Ibero-American Network of Pharmacogenetics and Pharmacogenomics (RIBEF) studies Latin American populations to benefit from the implementation of personalized medicine. Since 2006, it has studied ethnicity to apply pharmacogenetics knowledge in autochthonous populations of Latin America, considering ancestral medicine. The meeting 'Pharmacogenetics: ethnicity, Treatment and Health in Latin American Populations' was held in Mexico City, Mexico, and presented the relevance of RIBEF collaboration with Latin American researchers and the governments of Mexico, Spain and the Autonomous Community of Extremadura. The results of 17 years of uninterrupted work by RIBEF, the Declaration of Mérida/T'Hó and the call for the Dr José María Cantú Award for studies focused on the pharmacogenetics of native populations in Latin America were presented.


Subject(s)
Ethnicity , Pharmacogenetics , Humans , Ethnicity/genetics , Latin America/epidemiology , Mexico/epidemiology , Pharmacogenetics/methods , Precision Medicine
11.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372959

ABSTRACT

Tobacco smoking is the leading risk factor for many respiratory diseases. Several genes are associated with nicotine addiction, such as CHRNA5 and ADAM33. This research aims to evaluate the association of the polymorphisms rs16969968 (CHRNA5) and rs3918396 (ADAM33) in patients who developed severe COVID-19. We included 917 COVID-19 patients hospitalized with critical disease and oxygenation impairment. They were divided into two groups, tobacco-smoking (n = 257) and non-smoker (n = 660) patients. The genotype and allele frequencies of two single nucleotide variants, the rs16969968 (CHRNA5) and rs3918396 (ADAM33), were evaluated. The rs3918396 in ADAM33 does not show a significative association. We analyzed the study population according to the rs16969968 genotype (GA + AA, n = 180, and GG, n = 737). The erythrocyte sedimentation rate (ESR) shows statistical differences; the GA + AA group had higher values than the GG group (p = 0.038, 32 vs. 26 mm/h, respectively). The smoking patients and GA or AA genotype carriers had a high positive correlation (p < 0.001, rho = 0.753) between fibrinogen and C-reactive protein. COVID-19 patients and smokers carriers of one or two copies of the risk allele (rs16969968/A) have high ESR and a positive correlation between fibrinogen and C-reactive protein.


Subject(s)
COVID-19 , Receptors, Nicotinic , Humans , C-Reactive Protein/genetics , Receptors, Nicotinic/genetics , Polymorphism, Single Nucleotide , COVID-19/genetics , Tobacco Smoking , Biomarkers , Fibrinogen/genetics , Nucleotides , Genetic Predisposition to Disease , ADAM Proteins/genetics
12.
Int J Mol Sci ; 24(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37373259

ABSTRACT

In COVID-19, critical disease and invasive mechanical ventilation (IMV) increase the risk of death, mainly in patients over 60 years of age. OBJECTIVES: To find the relationship between miR-21-5p and miR-146a-5p in terms of the severity, IMV, and mortality in hospitalized COVID-19 patients younger than 55 years of age. METHODS: The patients were stratified according to disease severity using the IDSA/WHO criteria for severe and critical COVID-19 and subclassified into critical non-survivors and critical survivors. RESULTS: Ninety-seven severe/critical COVID-19 patients were included; 81.3% of the deceased were male and 18.8% were female. Higher expression miR-21-5p levels were associated as follows: severe vs. critical disease (p = 0.007, FC = 0.498), PaO2/FiO2 index, mild vs. severe (p = 0.027, FC = 0.558), and survivors vs. non-survivors (p = 0.03, FC = 0.463). Moreover, we identified correlations with clinical variables: CRP (rho = -0.54, p < 0.001), D-dimer (rho = -0.47, p < 0.05), related to damage in the kidney (rho = 0.60, p < 0.001), liver (rho = 0.41, p < 0.05), and lung (rho = 0.54, p < 0.001). Finally, miR-21-5p thresholds were calculated according to severity (8.191), IMV (8.191), and mortality (8.237); these values increased the risk of developing a critical disease (OR = 4.19), the need for IMV (OR = 5.63), and death (OR = 6.00). CONCLUSION: Increased expression levels of miR-21-5p are related to worse outcome of COVID-19 in younger hospitalized patients.


Subject(s)
COVID-19 , MicroRNAs , Humans , Male , Female , Middle Aged , Aged , COVID-19/genetics , Respiration, Artificial , MicroRNAs/genetics
13.
Pharmacogenomics ; 24(5): 239-241, 2023 04.
Article in English | MEDLINE | ID: mdl-37014403

ABSTRACT

Tweetable abstract Opportunities for pharmacogenetics implementation in chronic respiratory diseases through the employment of genotype-guided prescriptions in treating nonrespiratory comorbidities.


Subject(s)
Pharmacogenetics , Respiratory Tract Diseases , Humans , Genotype , Respiratory Tract Diseases/drug therapy , Respiratory Tract Diseases/genetics
14.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108839

ABSTRACT

This paper assesses the association of the insertion/deletion ACE (angiotensin-converting enzyme) variant (rs1799752 I/D) and the serum ACE activity with the severity of COVID-19 as well as its impact on post-COVID-19, and we compare these associations with those for patients with non-COVID-19 respiratory disorders. We studied 1252 patients with COVID-19, 104 subjects recovered from COVID-19, and 74 patients hospitalized with a respiratory disease different from COVID-19. The rs1799752 ACE variant was assessed using TaqMan® Assays. The serum ACE activity was determined using a colorimetric assay. The DD genotype was related to risk for invasive mechanical ventilation (IMV) requirement as an indicator of COVID-19 severity when compared to the frequencies of II + ID genotypes (p = 0.025, OR = 1.428, 95% CI = 1.046-1.949). In addition, this genotype was significantly higher in COVID-19 and post-COVID-19 groups than in the non-COVID-19 subjects. The serum ACE activity levels were lower in the COVID-19 group (22.30 U/L (13.84-32.23 U/L)), which was followed by the non-COVID-19 (27.94 U/L (20.32-53.36 U/L)) and post-COVID-19 subjects (50.00 U/L (42.16-62.25 U/L)). The DD genotype of the rs1799752 ACE variant was associated with the IMV requirement in patients with COVID-19, and low serum ACE activity levels could be related to patients with severe disease.


Subject(s)
COVID-19 , Polymorphism, Genetic , Humans , COVID-19/genetics , Genotype , Peptidyl-Dipeptidase A/genetics , Carboxypeptidases/metabolism
16.
Drug Metab Pers Ther ; 38(4): 293, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38167267
17.
Expert Rev Respir Med ; 16(11-12): 1145-1152, 2022.
Article in English | MEDLINE | ID: mdl-36416606

ABSTRACT

INTRODUCTION: The study of genetic variants in response to different drugs has predominated in fields of medicine such as oncology and infectious diseases. In chronic respiratory diseases, the available pharmacogenomic information is scarce but not less relevant. AREAS COVERED: We searched the pharmacogenomic recommendations for respiratory diseases in the Table of Pharmacogenomic Biomarkers in Drug Labeling (U.S. Food and Drug Administration), the Clinical Pharmacogenomics Implementation Consortium (CPIC), and PharmGKB. The main pharmacogenomics recommendation in this field is to assess CFTR variants for using ivacaftor and its combination. The drugs' labels for arformoterol, indacaterol, and umeclidinium indicate a lack of influence of genetic variants in the pharmacokinetics of these drugs. Further studies should evaluate the contribution of CYP2D6 and CYP2C19 variants for formoterol. In addition, there are reports of potential pharmacogenetic variants in the treatment with acetylcysteine (TOLLIP rs3750920) and captopril (ACE rs1799752). The genetic variations for warfarin also are presented in PharmGKB and CPIC for patients with pulmonary hypertension. EXPERT OPINION: The pharmacogenomics recommendations for lung diseases are limited. The clinical implementation of pharmacogenomics in treating respiratory diseases will contribute to the quality of life of patients with chronic respiratory diseases.


Subject(s)
Pharmacogenetics , Quality of Life , Humans , Biomarkers
18.
Front Med (Lausanne) ; 9: 1000147, 2022.
Article in English | MEDLINE | ID: mdl-36341268

ABSTRACT

Introduction: The systemic viral disease caused by the SARS-CoV-2 called coronavirus disease 2019 (COVID-19) continues to be a public health problem worldwide. Objective: This study is aimed to evaluate the association and predictive value of indices of systemic inflammation with severity and non-survival of COVID-19 in Mexican patients. Materials and Methods: A retrospective study was carried out on 807 subjects with a confirmed diagnosis of COVID-19. Clinical characteristics, acute respiratory distress syndrome (ARDS), severity according to PaO2/FiO2 ratio, invasive mechanical ventilation (IMV), and non-survival outcome were considered to assess the predictive value and the association of 11 systemic inflammatory indices derived from hematological parameters analyzed at the hospital admission of patients. The receiver operating characteristics curve was applied to determine the thresholds for 11 biomarkers, and their prognostic values were assessed via the Kaplan-Meier method. Results: 26% of the studied subjects showed COVID-19 severe (PaO2/FiO2 ratio ≤ 100), 82.4% required IMV, and 39.2% were non-survival. The indices NHL, NLR, RDW, dNLR, and SIRI displayed predictive values for severe COVID-19 and non-survival. NHL, SIRI, and NLR showed predictive value for IMV. The cut-off values for RDW (OR = 1.85, p < 0.001), NHL (OR = 1.67, p = 0.004) and NLR (OR = 1.56, p = 0.012) were mainly associated with severe COVID-19. NHL (OR = 3.07, p < 0.001), AISI (OR = 2.64, p < 0.001) and SIRI (OR = 2.51, p < 0.001) were associated with IMV support, while for non-survival the main indices associated were NHL (OR = 2.65, p < 0.001), NLR (OR = 2.26, p < 0.001), dNLR (OR = 1.92, p < 0.001), SIRI (OR = 1.67, p = 0.002) and SII (OR = 1.50, p = 0.010). The patients with an RDW, PLR, NLR, dNLR, MLR, SII, and NHL above the cut-off had a survival probability of COVID-19 50% lower, with an estimated mean survival time of 40 days. Conclusion: The emergent systemic inflammation indices NHL, NLR, RDW, SII, and SIRI have a predictive power of severe COVID-19, IMV support, and low survival probability during hospitalization by COVID-19 in Mexican patients.

19.
Front Immunol ; 13: 949413, 2022.
Article in English | MEDLINE | ID: mdl-35967349

ABSTRACT

Interferons (IFNs) are a group of cytokines with antiviral, antiproliferative, antiangiogenic, and immunomodulatory activities. Type I IFNs amplify and propagate the antiviral response by interacting with their receptors, IFNAR1 and IFNAR2. In COVID-19, the IFNAR2 (interferon alpha and beta receptor subunit 2) gene has been associated with the severity of the disease, but the soluble receptor (sIFNAR2) levels have not been investigated. We aimed to evaluate the association of IFNAR2 variants (rs2236757, rs1051393, rs3153, rs2834158, and rs2229207) with COVID-19 mortality and to assess if there was a relation between the genetic variants and/or the clinical outcome, with the levels of sIFNAR2 in plasma samples from hospitalized individuals with severe COVID-19. We included 1,202 subjects with severe COVID-19. The genetic variants were determined by employing Taqman® assays. The levels of sIFNAR2 were determined with ELISA in plasma samples from a subgroup of 351 individuals. The rs2236757, rs3153, rs1051393, and rs2834158 variants were associated with mortality risk among patients with severe COVID-19. Higher levels of sIFNAR2 were observed in survivors of COVID-19 compared to the group of non-survivors, which was not related to the studied IFNAR2 genetic variants. IFNAR2, both gene, and soluble protein, are relevant in the clinical outcome of patients hospitalized with severe COVID-19.


Subject(s)
COVID-19 , Interferon Type I , Receptor, Interferon alpha-beta , COVID-19/genetics , COVID-19/mortality , Hospitalization , Humans , Interferon Type I/genetics , Interferon-alpha/genetics , Receptor, Interferon alpha-beta/genetics
20.
Curr Issues Mol Biol ; 44(8): 3283-3290, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35892712

ABSTRACT

BACKGROUND: Genetic susceptibility to infectious diseases is partly due to the variation in the human genome, and COVID-19 is not the exception. This study aimed to identify whether risk alleles of known genes linked with emphysema (SERPINA1) and pulmonary fibrosis (MUC5B) are associated with severe COVID-19, and whether plasma mucin 5B differs according to patients' outcomes. MATERIALS AND METHODS: We included 1258 Mexican subjects diagnosed with COVID-19. We genotyped rs2892474 and rs17580 of the SERPINA1 gene and rs35705950 of MUC5B. Based on the rs35705950 genotypes, mucin 5B plasma protein levels were quantified. RESULTS: Homozygous for the risk alleles of the three polymorphisms were found in less than 5% of the study population, but no statistically significant difference in the genotype or allele association analysis. At the protein level, non-survivors carrying one or two copies of the risk allele rs35705950 in MUC5B (GT + TT) had lower levels of mucin 5B compared to the survivors (0.0 vs. 0.17 ng/mL, p = 0.0013). CONCLUSION: The polymorphisms rs28929474 and rs17580 of SERPINA1 and rs35705950 of MUC5B are not associated with the risk of severe COVID-19 in the Mexican population. COVID-19 survivor patients bearing one or two copies of the rs35705950 risk allele have higher plasma levels of mucin 5B.

SELECTION OF CITATIONS
SEARCH DETAIL
...