Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Rep (N Y) ; 1(2): None, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34939047

ABSTRACT

Mapping DNA damage and its repair has immense potential in understanding environmental exposures, their genotoxicity, and their impact on human health. Monitoring changes in genomic stability also aids in the diagnosis of numerous DNA-related diseases, such as cancer, and assists in monitoring their progression and prognosis. Developments in recent years have enabled unprecedented sensitivity in quantifying the global DNA damage dose in cells via fluorescence-based analysis down to the single-molecule level. However, genome-wide maps of DNA damage distribution are challenging to produce. Here, we describe the localization of DNA damage and repair loci by repair-assisted damage detection sequencing (RADD-seq). Based on the enrichment of damage lesions coupled with a pull-down assay and followed by next-generation sequencing, this method is easy to perform and can produce compelling results with minimal coverage. RADD-seq enables the localization of both DNA damage and repair sites for a wide range of single-strand damage types. Using this technique, we created a genome-wide map of the oxidation DNA damage lesion 8-oxo-7,8-dihydroguanine before and after repair. Oxidation lesions were heterogeneously distributed along the human genome, with less damage occurring in tight chromatin regions. Furthermore, we showed repair is prioritized for highly expressed, essential genes and in open chromatin regions. RADD-seq sheds light on cellular repair mechanisms and is capable of identifying genomic hotspots prone to mutation.

2.
Nucleic Acids Res ; 46(14): e87, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29788371

ABSTRACT

Next generation sequencing (NGS) is challenged by structural and copy number variations larger than the typical read length of several hundred bases. Third-generation sequencing platforms such as single-molecule real-time (SMRT) and nanopore sequencing provide longer reads and are able to characterize variations that are undetected in NGS data. Nevertheless, these technologies suffer from inherent low throughput which prohibits deep sequencing at reasonable cost without target enrichment. Here, we optimized Cas9-Assisted Targeting of CHromosome segments (CATCH) for nanopore sequencing of the breast cancer gene BRCA1. A 200 kb target containing the 80 kb BRCA1 gene body and its flanking regions was isolated intact from primary human peripheral blood cells, allowing long-range amplification and long-read nanopore sequencing. The target was enriched 237-fold and sequenced at up to 70× coverage on a single flow-cell. Overall performance and single-nucleotide polymorphism (SNP) calling were directly compared to Illumina sequencing of the same enriched sample, highlighting the benefits of CATCH for targeted sequencing. The CATCH enrichment scheme only requires knowledge of the target flanking sequence for Cas9 cleavage while providing contiguous data across both coding and non-coding sequence and holds promise for characterization of complex disease-related or highly variable genomic regions.


Subject(s)
BRCA1 Protein/genetics , CRISPR-Associated Protein 9 , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Chromosomes, Human , Escherichia coli/genetics , Gene Targeting , Genetic Loci , Genome, Bacterial , Humans , Nanopores
SELECTION OF CITATIONS
SEARCH DETAIL
...