Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Animal ; 18(5): 101154, 2024 May.
Article in English | MEDLINE | ID: mdl-38703755

ABSTRACT

The Latvian local goat (LVK) breed represents the only native domestic goat breed in Latvia, but its limited population places it within the endangered category. However, the LVK breed has not yet undergone a comprehensive genetic characterization. Therefore, we completed whole genome sequencing to reveal the genetic foundation of the LVK breed while identifying genetic traits linked to the somatic cell count (SCC) levels. The study included 40 genomes of LVK goats sequenced to acquire at least 35x or 10x coverage. A Principal component analysis, a genetic distance tree, and an admixture analysis showed LVK's similarity to some European breeds, such as Finnish Landrace, Alpine, and Saanen, which aligns with the breed's history. An analysis of genome-wide heterozygosity, nucleotide diversity, and LD analysis indicated that the LVK population exhibits substantial levels of genetic diversity. LVK genome was dominated by short runs of homozygosity (ROHs, ≤ 500 kb) with a median length of 25 kb. With FROH 2.49%, average inbreeding levels were low; however, FROH ranged broadly from 0.13 to 12.2%. With the exception of one pure-blood breeding buck exhibiting FROH of 9.3% and FSNP of 8.5%, animals with at least 66% LVK ancestry showed moderate or no inbreeding. Overall, this study demonstrated that the LVK goats can be differentiated from imported breeds, although the population has a complex genetic structure. We were able to identify potential genetic traits associated with SCC levels, although the kinship of the animals and the heterogenic substructure of the population might have largely influenced the association analysis. We identified 26 genetic variants associated with SCC levels, which included the potentially relevant SNP rs662053371 in the OSBPL8 gene, indicating a potential signal linked to lipid metabolism in goats. To conclude, these findings present valuable insight into the genetic structure of the LVK breed for the conservation of local genetic resources.


Subject(s)
Genetic Variation , Goats , Animals , Goats/genetics , Latvia , Breeding , Cell Count/veterinary , Polymorphism, Single Nucleotide , Whole Genome Sequencing/veterinary , Female , Male , Genome
2.
Article in English | MEDLINE | ID: mdl-31143444

ABSTRACT

Background: Acinetobacter baumannii is an emerging pathogen capable of causing hospital-acquired infections (HAIs). It has the ability to survive on environmental surfaces for months, making transmission difficult to control. Our report describes the investigation and restriction of an outbreak of A.baumannii in the Neonatal Intensive Care Unit (NICU) using whole-genome sequencing (WGS) and multi-modal infection control measures. Methods: A prospective surveillance of HAIs was initiated in the NICU at the Pauls Stradins Clinical University Hospital (PSCUH) in Latvia on 1/9/2012 and identified an outbreak of A.baumannii. Case definitions for A.baumannii bloodstream infection (BSI) and colonization were implemented; surveillance cultures were obtained from all admitted patients to monitor the rate of colonization; an infection prevention and control team was formed and infection control interventions implemented. Environmental sampling of the NICU and Labour ward was performed. We employed WGS to differentiate phenotypically identical multidrug-resistant A.baumannii (MDRAB) strains from simultaneous intrahospital outbreaks in the adult Intensive Care Unit and NICU. Results: Between 1/9/2012 and 31/12/2017 the surveillance included 2157 neonates. A total of 17 neonates had A.baumannii BSI, with the highest rate of 30.0 cases per 1000 bed-days in November 2012. Rectal screening samples were positive for A.baumannii-complex in 182 neonates reaching 119.6 per 1000 bed-days in July 2015. All 298 environmental cultures were negative. Two phenotypically identical MDRAB isolates from the simultaneous intrahospital outbreaks were differentiated using WGS, ruling out an inter-ward transmission. Adherence to stringent infection control measures decreased BSI cases but colonization remained persistent. With several relapses, the outbreak was ongoing for four years. No new A.baumannii BSI cases were registered after total environmental decontamination in the NICU in July 2015. Colonization reappeared and persisted until in November 2016 when the ward was temporarily closed, relocated and renovated. No A.baumannii cases were registered after the renovation. Conclusion: The HAI surveillance system successfully detected and facilitated the control of the A.baumannii outbreak. Whole-genome sequencing was found to be a useful method for differentiation of phenotypically identical A.baumannii strains from the intrahospital outbreak. Only multi-modal infection control program, including closure, temporary relocation, and renovation of the ward, restricted the outbreak.


Subject(s)
Acinetobacter Infections/prevention & control , Disease Outbreaks/prevention & control , Infection Control/methods , Intensive Care Units, Neonatal , Whole Genome Sequencing , Acinetobacter Infections/blood , Acinetobacter Infections/epidemiology , Acinetobacter baumannii , Bacteremia/epidemiology , Bacteremia/microbiology , Cross Infection/epidemiology , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial , Epidemiological Monitoring , Female , Gestational Age , Humans , Infant, Newborn , Latvia/epidemiology , Male , Phylogeny , Prospective Studies
3.
Meta Gene ; 2: 565-78, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25606439

ABSTRACT

BACKGROUND: Abnormal lipid levels are considered one of the most significant risk factors for atherosclerosis and coronary artery disease, two of the main causes of death worldwide. Apart from monogenic cases of hypercholesterolemia, most of the common dyslipidemias are caused by a number of low-impact polymorphisms. It has recently been reported that frequent polymorphisms at a large number of loci are significantly associated with one or more blood lipid parameters in many populations. Identifying these associations in different populations and estimating the possible interactions between genetic models are necessary to explain the underlying genetic architecture of the associated loci and their ultimate impact on lipid-associated traits. METHODS: We estimated the association between 144 common single-nucleotide polymorphisms (SNPs) from published genome-wide association studies and the levels of total cholesterol, low- and high-density lipoprotein-cholesterol, and triglycerides in 1273 individuals from the Genome Database of the Latvian Population. We analyzed a panel of 144 common SNPs with Illumina GoldenGate Genotyping Assays on the Illumina BeadXpress System. RESULTS: Ten SNPs at the CETP locus and two at the MLXIPL locus were associated with reduced high-density lipoprotein-cholesterol levels; one SNP at the TOMM40 locus was associated with increased low-density lipoprotein-cholesterol; and four SNPs at the MLXIPL locus were associated with increased log triglyceride levels. There was also a significant correlation between the number of risk alleles and all the lipid parameters, suggesting that the coexistence of many low-impact SNPs has a greater effect on the dyslipidemia phenotype than the individual effects of found SNPs. CONCLUSION: We conclude that the CETP, MLXIPL, and TOMM40 loci are the strongest genetic factors underlying the variability in lipid traits in our population.

4.
Exp Clin Endocrinol Diabetes ; 120(8): 466-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22441719

ABSTRACT

Polymorphisms in the gene coding for transcription factor 7 like 2 (TCF7L2) are recognized as the strongest common genetic risk factors for type 2 diabetes (T2D) across multiple ethnicities. This study was conducted to evaluate an association between TCF7L2 variants and diabetes susceptibility in the population of Latvia. We genotyped 4 single nucleotide polymorphisms (SNP) rs7901695, rs7903146, rs11196205 and rs12255372 in 1 093 controls and 1 043 diabetic subjects. Association with T2D was found for 3 SNPs rs7901695, rs7903146 and rs12255372 in the whole sample (under an additive genetic model, the adjusted odds ratios (OR) were 1.26, 95% CI [1.08-1.48], P=0.003; OR=1.32, 95% CI [1.12-1.55], P=0.001 and OR=1.35, 95% CI [1.15-1.60], P=0.0004 respectively). In addition observed effects on T2D susceptibility for analysed SNPs were higher among subjects with BMI under 30 kg/m². The impact of TCF7L2 variation on T2D risk in Latvian population is compatible with that demonstrated by a range of studies conducted in various ethnic groups.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , Transcription Factor 7-Like 2 Protein/genetics , Body Mass Index , Case-Control Studies , Databases, Genetic , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Latvia , Male , Middle Aged , Obesity/complications , Transcription Factor 7-Like 2 Protein/chemistry , Transcription Factor 7-Like 2 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL