Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Vaccines (Basel) ; 12(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38400184

ABSTRACT

Articulating the wide range of health, social and economic benefits that vaccines offer may help to overcome obstacles in the vaccine development pipeline. A framework to guide the assessment and communication of the value of a vaccine-the Full Value of Vaccine Assessment (FVVA)-has been developed by the WHO. The FVVA framework offers a holistic assessment of the value of vaccines, providing a synthesis of evidence to inform the public health need of a vaccine, describing the supply and demand aspects, its market and its impact from a health, financial and economic perspective. This paper provides a practical guide to how FVVAs are developed and used to support investment in vaccines, ultimately leading to sustained implementation in countries. The FVVA includes a range of elements that can be broadly categorised as synthesis, vaccine development narrative and defining vaccine impact and value. Depending on the features of the disease/vaccine in question, different elements may be emphasised; however, a standardised set of elements is recommended for each FVVA. The FVVA should be developed by an expert group who represent a range of stakeholders, perspectives and geographies and ensure a fair, coherent and evidence-based assessment of vaccine value.

2.
Vaccine ; 41(49): 7307-7312, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37949751

ABSTRACT

The WHO/MPP mRNA Technology Transfer Programme, initiated in 2021, focuses on establishing mRNA vaccine manufacturing capacity in LMICs. On 17-21 April 2023, Programme partners were convened to review technology transfer progress, discuss sustainability aspects and promote mRNA product development for diseases relevant to LMICs. To help guide product development, this report introduces key considerations for for understanding the likelihood of technical and regulatory success and of policy development and procurement for mRNA vaccines to be developed and manufactured in LMICs. The report underscores the potential for LMICs to establish sustainable mRNA R&D pipelines.


Subject(s)
Developing Countries , Vaccines , Technology Transfer , Commerce , World Health Organization
3.
Expert Opin Drug Deliv ; 20(3): 315-322, 2023 03.
Article in English | MEDLINE | ID: mdl-36649573

ABSTRACT

INTRODUCTION: There is a need for investment in manufacturing for vaccine microarray patches (vMAPs) to accelerate vMAP development and access. vMAPs could transform vaccines deployment and reach to everyone, everywhere. AREAS COVERED: We outline vMAPs' potential benefits for epidemic preparedness and for outreach in low- and lower-middle-income countries (LMICs), share lessons learned from pandemic response, and highlight that investment in manufacturing-at-risk could accelerate vMAP development. EXPERT OPINION: Pilot manufacturing capabilities are needed to produce clinical trial material and enable emergency response. Funding vMAP manufacturing scale-up in parallel to clinical proof-of-concept studies could accelerate vMAP approval and availability. Incentives could mitigate the risks of establishing multi-vMAP manufacturing facilities early.


Subject(s)
Vaccination Coverage , Vaccines , Developing Countries , Pandemics
4.
Vaccine ; 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36529593

ABSTRACT

Research and innovation have been fundamental to many of the successes in immunization thus far, and will play important roles in the future success of Immunization Agenda 2030 (IA2030). Strategic Priority 7 (SP7) of IA2030, which addresses research and innovation, is explicitly informed by country needs and priorities, and aims to strengthen the innovation ecosystem through capacity building and collaboration at country, regional, and global levels. SP7 identifies four key focus areas: (1) "needs-based innovation", (2) "new and improved products, services, and practices", (3) "evidence for implementation", and (4) "local capacity". Strategic interventions in these key focus areas apply the lessons of the Global Vaccine Action Plan and the "Decade of Vaccines" to emphasize local innovation, promote the use of research by countries to improve program performance and impact, and encourage capacity building for the development and implementation of innovations. The proposed approach will maintain a focus on the development of new vaccines and the improvement of existing vaccines, and increase attention to innovation in service delivery. Monitoring and evaluation will foster evidence-based priority setting at the country level and help to ground the global research and development (R&D) agenda in the needs of communities. Together, these approaches are intended to harness the power of research and innovation more effectively, to meet the challenges of the future and achieve the ambitious goals of IA2030.

5.
PLoS One ; 17(10): e0274943, 2022.
Article in English | MEDLINE | ID: mdl-36256646

ABSTRACT

The emergence of potentially pandemic viruses has resulted in preparedness efforts to develop candidate vaccines and adjuvant formulations. We evaluated the dose-sparing effect and safety of two distinct squalene-based oil-in-water adjuvant emulsion formulations (IB160 and SE) with influenza A/H7N9 antigen. This phase I, randomized, double-blind, placebo-controlled, dose-finding trial (NCT03330899), enrolled 432 healthy volunteers aged 18 to 59. Participants were randomly allocated to 8 groups: 1A) IB160 + 15µg H7N9, 1B) IB160 + 7.5µg H7N9, 1C) IB160 + 3.75µg H7N9, 2A) SE + 15µg H7N9, 2B) SE + 7.5µg H7N9, 2C) SE + 3.75µg H7N9, 3) unadjuvanted vaccine 15µg H7N9 and 4) placebo. Immunogenicity was evaluated through haemagglutination inhibition (HI) and microneutralization (MN) tests. Safety was evaluated by monitoring local and systemic, solicited and unsolicited adverse events (AE) and reactions (AR) 7 and 28 days after each study injection, respectively, whereas serious adverse events (SAE) were monitored up to 194 days post-second dose. A greater increase in antibody geometric mean titers (GMT) was observed in groups receiving adjuvanted vaccines. Vaccinees receiving IB160-adjuvanted formulations showed the greatest response in group 1B, which induced an HI GMT increase of 4.7 times, HI titers ≥40 in 45.2% of participants (MN titers ≥40 in 80.8%). Vaccinees receiving SE-adjuvanted vaccines showed the greatest response in group 2A, with an HI GMT increase of 2.5 times, HI titers ≥40 in 22.9% of participants (MN titers ≥40 in 65.7%). Frequencies of AE and AR were similar among groups. Pain at the administration site and headache were the most frequent local and systemic solicited ARs. The vaccine candidates were safe and the adjuvanted formulations have a potential dose-sparing effect on immunogenicity against influenza A/H7N9. The magnitude of this effect could be further explored.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Humans , Squalene , Pandemics/prevention & control , Polysorbates , Emulsions , Antibodies, Viral , Hemagglutination Inhibition Tests , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Water
7.
Vaccine ; 39(45): 6573-6584, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34602302

ABSTRACT

Improved influenza vaccines are urgently needed to reduce the burden of seasonal influenza and to ensure a rapid and effective public-health response to future influenza pandemics. The Influenza Vaccines Research and Development (R&D) Roadmap (IVR) was created, through an extensive international stakeholder engagement process, to promote influenza vaccine R&D. The roadmap covers a 10-year timeframe and is organized into six sections: virology; immunology; vaccinology for seasonal influenza vaccines; vaccinology for universal influenza vaccines; animal and human influenza virus infection models; and policy, finance, and regulation. Each section identifies barriers, gaps, strategic goals, milestones, and additional R&D priorities germane to that area. The roadmap includes 113 specific R&D milestones, 37 of which have been designated high priority by the IVR expert taskforce. This report summarizes the major issues and priority areas of research outlined in the IVR. By identifying the key issues and steps to address them, the roadmap not only encourages research aimed at new solutions, but also provides guidance on the use of innovative tools to drive breakthroughs in influenza vaccine R&D.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Research
8.
Vaccine X ; 8: 100097, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34041476

ABSTRACT

INTRODUCTION: As of 2018, 118 of 194 WHO Member States reported the presence of an influenza vaccination policy. Although influenza vaccination policies do not guarantee equitable access or ensure vaccination coverage, they are critical to establishing a coordinated influenza vaccination program, which can reduce morbidity and mortality associated with yearly influenza, especially in high-risk groups. Established programs can also provide a good foundation for pandemic preparedness and response. METHODS: We utilized EXCEL and STATA to evaluate changes to national seasonal influenza vaccination policies reported on the WHO/UNICEF Joint Reporting Forms on Immunization (JRF) in 2014 and 2018. To characterize countries with or without policies, we incorporated external data on World Bank income groupings, WHO regions, and immunization system strength (using 3 proxy indicators). RESULTS: From 2014 to 2018 there was a small net increase in national seasonal influenza vaccination policies from 114 (59%) to 118 (61%). There was an increase in policies targeting high-risk groups from 34 in 2014 (34 /114 policies, 29%) to 56 (56/118 policies, 47%) in 2018. Policies were consistently more frequent in high-income countries, in WHO Regions of the Americas (89% of countries) and Europe (89%), and in countries satisfying all three immunization system strength indicators. Low and low-middle income countries, representing 40% of the worlds' population, accounted for 52/61 (85%) of countries with no evidence of a policy in either year. CONCLUSION: Our results demonstrate that national influenza vaccination policies vary significantly by region, income, and immunization system strength, and are less common in lower-income countries. Barriers to establishing and maintaining policies should be further examined as part of international efforts to expand influenza vaccination policies globally. Next generation influenza vaccine development should work to address barriers to influenza vaccination policy adoption, such as cost, logistics for adult vaccination, country priorities, need for yearly vaccination, and variations in seasonality.

9.
Biologicals ; 71: 55-60, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33966960

ABSTRACT

The International Alliance for Biological Standardization and the Coalition for Epidemic Preparedness Innovations organized a joint webinar on the use of platform technologies for vaccine development. To tackle new emerging infectious diseases, including SARS-CoV-2, rapid response platforms, using the same basic components as a backbone, yet adaptable for use against different pathogens by inserting new genetic or protein sequences, are essential. Furthermore, it is evident that development of platform technologies needs to continue, due to the emerging variants of SARS-CoV-2. The objective of the meeting was to discuss techniques for platform manufacturing that have been used for COVID-19 vaccine development, with input from regulatory authorities on their experiences with, and expectations of, the platforms. Industry and regulators have been very successful in cooperating, having completed the whole process from development to licensing at an unprecedented speed. However, we should learn from the experiences, to be able to be even faster when a next pandemic of disease X occurs.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Drug Development , SARS-CoV-2/immunology , COVID-19 Vaccines/therapeutic use , Congresses as Topic , Humans
10.
BMJ Glob Health ; 6(Suppl 2)2021 05.
Article in English | MEDLINE | ID: mdl-34011500

ABSTRACT

This paper explores the pipeline of new and upcoming vaccines as it relates to monitoring their safety. Compared with most currently available vaccines, that are constituted of live attenuated organisms or inactive products, future vaccines will also be based on new technologies. Several products that include such technologies are either already licensed or at an advanced stage of clinical development. Those include viral vectors, genetically attenuated live organisms, nucleic acid vaccines, novel adjuvants, increased number of antigens present in a single vaccine, novel mode of vaccine administration and thermostabilisation. The Global Advisory Committee on Vaccine Safety (GACVS) monitors novel vaccines, from the time they become available for large scale use. GACVS maintains their safety profile as evidence emerges from post-licensure surveillance and observational studies. Vaccines and vaccine formulations produced with novel technologies will have different safety profiles that will require adapting pharmacovigilance approaches. For example, GACVS now considers viral vector templates developed on the model proposed by Brighton Collaboration. The characteristics of those novel products will also have implications for the risk management plans (RMPs). Questions related to the duration of active monitoring for genetic material, presence of adventitious agents more easily detected with enhanced biological screening, or physiological mechanisms of novel adjuvants are all considerations that will belong to the preparation of RMPs. In addition to assessing those novel products and advising experts, GACVS will also consider how to more broadly communicate about risk assessment, so vaccine users can also benefit from the committee's advice.


Subject(s)
Pharmacovigilance , Vaccines , Advisory Committees , Humans , Risk Assessment , Vaccines/adverse effects
12.
NPJ Vaccines ; 5(1): 38, 2020.
Article in English | MEDLINE | ID: mdl-32411401

ABSTRACT

Until universal influenza vaccines become available, pandemic preparedness should include developing classical vaccines against potential pandemic influenza subtypes. We here show that addition of SWE adjuvant, a squalene-in-water emulsion, to H7N9 split influenza vaccine clearly enhanced functional antibody responses in ferrets. These were cross-reactive against H7N9 strains from different lineages and newly emerged H7N9 variants. Both vaccine formulations protected in almost all cases against severe pneumonia induced by intratracheal infection of ferrets with H7N9 influenza; however, the SWE adjuvant enhanced protection against virus replication and disease. Correlation analysis and curve fitting showed that both VN- and NI-titers were better predictors for protection than HI-titers. Moreover, we show that novel algorithms can assist in better interpretation of large data sets generated in preclinical studies. Cluster analysis showed that the adjuvanted vaccine results in robust immunity and protection, whereas the response to the non-adjuvanted vaccine is heterogeneous, such that the protection balance may be more easily tipped toward severe disease. Finally, cluster analysis indicated that the dose-sparing capacity of the adjuvant is at least a factor six, which greatly increases vaccine availability in a pandemic situation.

13.
Curr Opin Virol ; 40: 28-36, 2020 02.
Article in English | MEDLINE | ID: mdl-32279026

ABSTRACT

Conventional influenza vaccines are designed to stimulate neutralizing antibodies against immunodominant but highly variable hemagglutinin antigens. Inherent limitations include suboptimal protection against rapidly changing seasonal influenza viruses and a lack of protection against antigenically novel pandemic influenza. New technologies for developing influenza vaccines that induce more broadly protective and durable immunity are a growing area of research and focus on a variety of approaches, including targeting conserved antigens and stimulating cross-reactive T cell responses. This review highlights a new effort to track the development of universal influenza vaccine technologies. The Universal Influenza Vaccine Technology Landscape is intended to provide stakeholders and funders with a common source of information to monitor research progress and identify opportunities for informed investments and collaboration.


Subject(s)
Influenza Vaccines/immunology , Influenza, Human/virology , Orthomyxoviridae/immunology , Animals , Antibodies, Viral/immunology , Drug Design , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/genetics , Influenza, Human/immunology , Influenza, Human/prevention & control , Orthomyxoviridae/genetics
14.
Lancet HIV ; 7(2): e141-e148, 2020 02.
Article in English | MEDLINE | ID: mdl-31786175

ABSTRACT

Various long-awaited efficacy studies of vaccines and broadly neutralising antibodies for prevention of HIV are now well underway in highly endemic settings. One broadly neutralising monoclonal antibody is being assessed for proof of concept, and combinations are in the pipeline. Two multicomponent prime-and-boost vaccine regimens are being evaluated, one of which is designed for global coverage. These multicomponent vaccines present a new level of complexity that will challenge health delivery systems. We recommend that while awaiting the results, which will appear in 2020-22, the target product profiles and full public value proposition for both categories of products should be defined, and the regulatory, policy, and implementation pathways should be prepared. Economic and health benefits, cost of goods, administrative complexity, and user perspectives will be key considerations for the roll-out of effective products. Investments in manufacturing capacity and public-sector delivery systems will be needed to prepare for product introduction and scale-up. We propose a prioritisation of activities on the basis of a broad stakeholder consultation organised by WHO and UNAIDS.


Subject(s)
AIDS Vaccines/therapeutic use , Broadly Neutralizing Antibodies/therapeutic use , Drug Development , HIV Infections/prevention & control , Clinical Trials as Topic , Community Participation , Drug Approval , Drug Development/economics , Drug Development/legislation & jurisprudence , Health Policy , Humans , Marketing of Health Services
15.
NPJ Vaccines ; 5: 38, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17683

ABSTRACT

Until universal influenza vaccines become available, pandemic preparedness should include developing classical vaccines against potential pandemic influenza subtypes. We here show that addition of SWE adjuvant, a squalene-in-water emulsion, to H7N9 split influenza vaccine clearly enhanced functional antibody responses in ferrets. These were cross-reactive against H7N9 strains from different lineages and newly emerged H7N9 variants. Both vaccine formulations protected in almost all cases against severe pneumonia induced by intratracheal infection of ferrets with H7N9 influenza; however, the SWE adjuvant enhanced protection against virus replication and disease. Correlation analysis and curve fitting showed that both VN- and NI-titers were better predictors for protection than HI-titers. Moreover, we show that novel algorithms can assist in better interpretation of large data sets generated in preclinical studies. Cluster analysis showed that the adjuvanted vaccine results in robust immunity and protection, whereas the response to the non-adjuvanted vaccine is heterogeneous, such that the protection balance may be more easily tipped toward severe disease. Finally, cluster analysis indicated that the dose-sparing capacity of the adjuvant is at least a factor six, which greatly increases vaccine availability in a pandemic situation.

16.
NPJ Vaccines, v. 5, 38, mai. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3044

ABSTRACT

Until universal influenza vaccines become available, pandemic preparedness should include developing classical vaccines against potential pandemic influenza subtypes. We here show that addition of SWE adjuvant, a squalene-in-water emulsion, to H7N9 split influenza vaccine clearly enhanced functional antibody responses in ferrets. These were cross-reactive against H7N9 strains from different lineages and newly emerged H7N9 variants. Both vaccine formulations protected in almost all cases against severe pneumonia induced by intratracheal infection of ferrets with H7N9 influenza; however, the SWE adjuvant enhanced protection against virus replication and disease. Correlation analysis and curve fitting showed that both VN- and NI-titers were better predictors for protection than HI-titers. Moreover, we show that novel algorithms can assist in better interpretation of large data sets generated in preclinical studies. Cluster analysis showed that the adjuvanted vaccine results in robust immunity and protection, whereas the response to the non-adjuvanted vaccine is heterogeneous, such that the protection balance may be more easily tipped toward severe disease. Finally, cluster analysis indicated that the dose-sparing capacity of the adjuvant is at least a factor six, which greatly increases vaccine availability in a pandemic situation.

17.
Vaccine ; 37(52): 7519-7526, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31623915

ABSTRACT

Every two years, the Global Vaccine and Immunization Research Forum takes stock of global research in vaccines and immunization. As in prior years, the 2018 meeting addressed vaccine discovery, development, decision-making, and deployment. This time, however, it also featured two overarching themes: "Innovating for Equity" and "End-to-End Integration." Significant advances have been made in the last two years, but participants noted that some important goals of the Global Vaccine Action Plan are not being met and called urgently for innovation in improving access to vaccines. Two factors were highlighted as crucial to improving coverage: a focus on equity and sustainability throughout the immunization ecosystem, and an enabling political environment that prioritizes health and immunization.


Subject(s)
Biomedical Research , Global Health , Immunization Programs , Congresses as Topic , Humans , Immunization , Thailand , Vaccines/administration & dosage , World Health Organization
19.
Vaccine ; 37(9): 1245-1251, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30651198

ABSTRACT

Developing country vaccine manufacturers (DCVMs) supply over half of the vaccines used in developing country immunisation programs. Decisions by developing countries to establish vaccine manufacturing should be based on economic viability, however reliable assessments of vaccine production costs are lacking. This study aimed to quantify the cost of establishing vaccine manufacturing facilities and producing vaccines in developing countries. This study estimates vaccine production costs in developing countries based on twelve vaccines produced by eight DCVMs. The results were based on estimates of the capital and operating costs required to establish vaccine manufacturing facilities under three hypothetical scenarios of production scale and scope. Cost patterns were then compared to vaccine prices paid by countries in both industrialized and developing country markets. The cost of producing vaccines in developing countries was estimated to be on average US$ 2.18 per dose, ranging between US$ 0.98 and US$ 4.85 for different vaccine types and formulations. Vaccine costs-per-dose decrease as production scale and scope increase. Cost-per-dose is mainly driven by fixed costs, but at a scale of production over 20 million doses per year it becomes driven by variable costs. Under the three hypothetical scenarios used, costs-per-dose of vaccines produced by developing countries were around 47% lower than vaccine prices in developing-country markets and 84% lower than prices in industrialized-country markets. This study has found that local production of vaccines in developing countries exhibits both economies of scale and economies of scope. The lower costs relative to prices suggests that a producer surplus and potential profits may be attainable in both developing and developed country markets, supporting sustainable production.


Subject(s)
Costs and Cost Analysis , Developing Countries/statistics & numerical data , Immunization Programs , Vaccines/economics , Humans , Immunization Programs/economics , Vaccination/economics
20.
Vaccine ; 37(50): 7394-7395, 2019 11 28.
Article in English | MEDLINE | ID: mdl-29395536

ABSTRACT

The respiratory syncytial virus causes a considerable respiratory disease burden globally, most markedly in young infants, in low and middle income countries. A diverse product pipeline illustrates the recent intensification of research and development activities for vaccines and monoclonal antibodies against RSV. With the aim to ensure that product development activities are directed to address the public health needs, the World Health Organization has developed a research and development technical roadmap and articulated product characteristics preferences.


Subject(s)
Biomedical Research/organization & administration , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/biosynthesis , Respiratory Syncytial Virus, Human/immunology , Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , Female , Humans , Immunization/methods , Patient Safety , Pregnancy , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus, Human/pathogenicity , Respiratory System/immunology , Respiratory System/virology , Technology Transfer
SELECTION OF CITATIONS
SEARCH DETAIL
...