Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 129(1): 011806, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35841544

ABSTRACT

We report on the direct search for cosmic relic neutrinos using data acquired during the first two science campaigns of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity molecular tritium gas source are analyzed by a high-resolution MAC-E filter around the end point at 18.57 keV. The analysis is sensitive to a local relic neutrino overdensity ratio of η<9.7×10^{10}/α (1.1×10^{11}/α) at a 90% (95%) confidence level with α=1 (0.5) for Majorana (Dirac) neutrinos. A fit of the integrated electron spectrum over a narrow interval around the end point accounting for relic neutrino captures in the tritium source reveals no significant overdensity. This work improves the results obtained by the previous neutrino mass experiments at Los Alamos and Troitsk. We furthermore update the projected final sensitivity of the KATRIN experiment to η<1×10^{10}/α at 90% confidence level, by relying on updated operational conditions.

2.
Phys Rev Lett ; 126(9): 091803, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33750167

ABSTRACT

We report on the light sterile neutrino search from the first four-week science run of the KATRIN experiment in 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are analyzed by a high-resolution MAC-E filter down to 40 eV below the endpoint at 18.57 keV. We consider the framework with three active neutrinos and one sterile neutrino. The analysis is sensitive to the mass, m_{4}, of the fourth mass state for m_{4}^{2}≲1000 eV^{2} and to active-to-sterile neutrino mixing down to |U_{e4}|^{2}≳2×10^{-2}. No significant spectral distortion is observed and exclusion bounds on the sterile mass and mixing are reported. These new limits supersede the Mainz results for m_{4}^{2}≲1000 eV^{2} and improve the Troitsk bound for m_{4}^{2}<30 eV^{2}. The reactor and gallium anomalies are constrained for 100<Δm_{41}^{2}<1000 eV^{2}.

3.
Phys Rev Lett ; 123(22): 221802, 2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31868426

ABSTRACT

We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation.

4.
Anal Bioanal Chem ; 393(8): 1863-70, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19153722

ABSTRACT

The formation of Fe-Zn intermetallic compounds, as relevant in the commercial product galvannealed steel sheet, was investigated by scanning electron microscopy and different methods of X-ray diffraction. A scanning electron microscope with high resolution was applied to investigate the layers of the galvannealed coating and its topography. Grazing incidence X-ray diffraction (GID) was preferred over conventional Bragg-Brentano geometry for analysing thin crystalline layers because of its lower incidence angle alpha and its lower depth of information. Furthermore, in situ experiments at an environmental scanning electron microscope (ESEM) with an internal heating plate and at an X-ray diffractometer equipped with a high-temperature chamber were carried out. Thus, it was possible to investigate the phase evolution during heat treatment by X-ray diffraction and to display the growth of the zeta crystals in the ESEM.

5.
J Microsc ; 230(Pt 3): 499-508, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18503676

ABSTRACT

Bainite is thought to play an important role for the chemical and mechanical stabilization of metastable austenite in low-alloyed TRIP steels. Therefore, in order to understand and improve the material properties, it is important to locate and quantify the bainitic phase. To this aim, electron backscatter diffraction-based orientation microscopy has been employed. The main difficulty herewith is to distinguish bainitic ferrite from ferrite because both have bcc crystal structure. The most important difference between them is the occurrence of transformation induced geometrically necessary dislocations in the bainitic phase. To determine the areas with larger geometrically necessary dislocation density, the following orientation microscopy maps were explored: pattern quality maps, grain reference orientation deviation maps and kernel average misorientation maps. We show that only the latter allow a reliable separation of the bainitic and ferritic phase. The kernel average misorientation threshold value that separates both constituents is determined by an algorithm that searches for the smoothness of the boundaries between them.


Subject(s)
Alloys/analysis , Microscopy, Electron, Scanning/instrumentation , Microscopy, Electron, Transmission/methods , Steel/analysis , Ferric Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...