Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Canine Med Genet ; 8(1): 6, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34256860

ABSTRACT

BACKGROUND: Genetic heterogeneity of the canine angiotensin converting enzyme (ACE) gene is functionally important because the degree of aldosterone breakthrough with ACE-inhibitor therapy is greater in variant positive dogs compared to variant negative dogs, but the prevalence of the variant is not known. The purpose of this study was to determine ACE gene variant-positive prevalence in a population of 497 dogs of different breeds. RESULTS: Overall variant-positive prevalence was 31%, with 20% of dogs heterozygous and 11% of dogs homozygous. The variant was overrepresented in Irish Wolfhounds (prevalence 95%; P < .001), Dachshunds (prevalence 90%; P < .001), Cavalier King Charles Spaniels (prevalence 85%; P < .001), Great Danes (prevalence 84%; P < .001), and Bull Mastiffs (prevalence 58%; P = .02). Irish Wolfhounds were more likely to be homozygous than heterozygous (P < .001). CONCLUSIONS: Nearly one-third of dogs in this study were positive for a functionally important ACE gene variant, with wide prevalence variability between breeds. The clinical importance of high ACE gene variant-positive prevalence in some breeds requires further study because the highest prevalences were found in breeds that are predisposed to heart disease and therefore may be treated with ACE-inhibitors.

2.
Vet J ; 232: 16-19, 2018 02.
Article in English | MEDLINE | ID: mdl-29428085

ABSTRACT

Myxomatous mitral valve disease (MMVD) is the most common heart disease in the dog. It is believed to be heritable in Cavalier King Charles spaniels (CKCS) and Dachshunds. Myxomatous mitral valve disease is a familial disease in human beings as well and genetic mutations have been associated with its development. We hypothesized that a genetic mutation associated with the development of the human form of MMVD was associated with the development of canine MMVD. DNA was isolated from blood samples from 10 CKCS and 10 Dachshunds diagnosed with MMVD, and whole genome sequences from each animal were obtained. Variant calling from whole genome sequencing data was performed using a standardized bioinformatics pipeline for all samples. After filtering, the canine genes orthologous to the human genes known to be associated with MMVD were identified and variants were assessed for likely pathogenic implications. No variant was found in any of the genes evaluated that was present in least eight of 10 affected CKCS or Dachshunds. Although mitral valve disease in the CKCS and Dachshund is a familial disease, we did not identify genetic cause in the genes responsible for the human disease in the dogs studied here.


Subject(s)
Dog Diseases/genetics , Heart Valve Diseases/veterinary , Mitral Valve , Animals , DNA/blood , Dogs , Heart Valve Diseases/genetics , Humans , Mitral Valve Prolapse/genetics , Mutation , Species Specificity , Whole Genome Sequencing/veterinary
3.
Vet Pathol ; 55(1): 177-181, 2018 01.
Article in English | MEDLINE | ID: mdl-28005496

ABSTRACT

Primary hypoadrenocorticism, or Addison's disease, is an autoimmune condition common in certain dog breeds that leads to the destruction of the adrenal cortex and a clinical syndrome involving anorexia, gastrointestinal upset, and electrolyte imbalances. Previous studies have demonstrated that this destruction is strongly associated with lymphocytic-plasmacytic inflammation and that the lymphocytes are primarily T cells. In this study, we used both immunohistochemistry and in situ hybridization to characterize the T-cell subtypes involved. We collected postmortem specimens of 5 dogs with primary hypoadrenocorticism and 2 control dogs and, using the aforementioned techniques, showed that the lymphocytes are primarily CD4+ rather than CD8+. These findings have important implications for improving our understanding of the pathogenesis and in searching for the underlying causative genetic polymorphisms.


Subject(s)
Addison Disease/veterinary , Adrenal Glands/pathology , Dog Diseases/pathology , Lymphocyte Subsets/pathology , Addison Disease/pathology , Animals , CD4 Lymphocyte Count/veterinary , Dog Diseases/immunology , Dogs , Female , In Situ Hybridization/veterinary , Male
4.
Mamm Genome ; 27(9-10): 485-94, 2016 10.
Article in English | MEDLINE | ID: mdl-27129452

ABSTRACT

Application of imputation methods to accurately predict a dense array of SNP genotypes in the dog could provide an important supplement to current analyses of array-based genotyping data. Here, we developed a reference panel of 4,885,283 SNPs in 83 dogs across 15 breeds using whole genome sequencing. We used this panel to predict the genotypes of 268 dogs across three breeds with 84,193 SNP array-derived genotypes as inputs. We then (1) performed breed clustering of the actual and imputed data; (2) evaluated several reference panel breed combinations to determine an optimal reference panel composition; and (3) compared the accuracy of two commonly used software algorithms (Beagle and IMPUTE2). Breed clustering was well preserved in the imputation process across eigenvalues representing 75 % of the variation in the imputed data. Using Beagle with a target panel from a single breed, genotype concordance was highest using a multi-breed reference panel (92.4 %) compared to a breed-specific reference panel (87.0 %) or a reference panel containing no breeds overlapping with the target panel (74.9 %). This finding was confirmed using target panels derived from two other breeds. Additionally, using the multi-breed reference panel, genotype concordance was slightly higher with IMPUTE2 (94.1 %) compared to Beagle; Pearson correlation coefficients were slightly higher for both software packages (0.946 for Beagle, 0.961 for IMPUTE2). Our findings demonstrate that genotype imputation from SNP array-derived data to whole genome-level genotypes is both feasible and accurate in the dog with appropriate breed overlap between the target and reference panels.


Subject(s)
Dogs/genetics , Genotype , Alleles , Animals , Breeding , Computer Simulation , Models, Genetic , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL