Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 28(6): 1043-1049, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29486970

ABSTRACT

A series of isoquinuclidine benzamides as glycine uptake inhibitors for the treatment of schizophrenia are described. Potency, lipophilicity, and intrinsic human microsomal clearance were parameters for optimization. Potency correlated with the nature of the ortho substituents of the benzamide ring, and reductions in lipophilicity could be achieved through heteroatom incorporation in the benzamide and pendant phenyl moieties. Improvements in human CLint were achieved through changes in ring size and the N-alkyl group of the isoquinuclidine itself, with des-alkyl derivatives (40-41, 44) demonstrating the most robust microsomal stability. Dimethylbenzamide 9 was tested in a mouse MK801 LMA assay and had a statistically significant attenuation of locomotor activity at 3 and 10 µmol/kg compared to control.


Subject(s)
Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Administration, Oral , Animals , Benzamides/administration & dosage , Benzamides/chemistry , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/chemistry , Dose-Response Relationship, Drug , Humans , Injections, Intravenous , Locomotion/drug effects , Male , Mice , Molecular Structure , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
2.
Drug Metab Dispos ; 44(10): 1668-74, 2016 10.
Article in English | MEDLINE | ID: mdl-27457784

ABSTRACT

Epacadostat (EPA, INCB024360) is a first-in-class, orally active, investigational drug targeting the enzyme indoleamine 2,3-dioxygenase 1 (IDO1). In Phase I studies, EPA has demonstrated promising clinical activity when used in combination with checkpoint modulators. When the metabolism of EPA was investigated in humans, three major, IDO1-inactive, circulating plasma metabolites were detected and characterized: M9, a direct O-glucuronide of EPA; M11, an amidine; and M12, N-dealkylated M11. Glucuronidation of EPA to form M9 is the dominant metabolic pathway, and in vitro, this metabolite is formed by UGT1A9. However, negligible quantities of M11 and M12 were detected when EPA was incubated with a panel of human microsomes from multiple tissues, hepatocytes, recombinant human cytochrome P450s (P450s), and non-P450 enzymatic systems. Given the reductive nature of M11 formation and the inability to define its source, the role of gut microbiota was investigated. Analysis of plasma from mice dosed with EPA following pretreatment with either antibiotic (ciprofloxacin) to inhibit gut bacteria or 1-aminobenzotriazole (ABT) to systemically inhibit P450s demonstrated that gut microbiota is responsible for the formation of M11. Incubations of EPA in human feces confirmed the role of gut bacteria in the formation of M11. Further, incubations of M11 with recombinant P450s showed that M12 is formed via N-dealkylation of M11 by CYP3A4, CYP2C19, and CYP1A2. Thus, in humans three major plasma metabolites of EPA were characterized: two primary metabolites, M9 and M11, formed directly from EPA via UGT1A9 and gut microbiota, respectively, and M12 formed as a secondary metabolite via P450s from M11.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Glucuronosyltransferase/metabolism , Intestines/microbiology , Microbiota , Oximes/metabolism , Sulfonamides/metabolism , Humans , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , UDP-Glucuronosyltransferase 1A9
3.
Bioorg Med Chem Lett ; 22(2): 1174-8, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22197137

ABSTRACT

A series of 4-piperidin-4-ylidenemethyl-benzamide δ-opioid receptor agonists is described with an emphasis on balancing the potency, subtype selectivity and in vitro ADME and safety properties. The three sites impacting SAR are substitutions on the aryl group (R(1)), the piperidine nitrogen (R(2)), and the amide (R(3)). Each region contributes to the balance of properties for δ opioid activity and a desirable CNS profile, and two clinical candidates (20 and 24) were advanced.


Subject(s)
Benzamides/pharmacology , Central Nervous System/drug effects , Piperidines/pharmacology , Receptors, Opioid, delta/agonists , Benzamides/chemistry , Central Nervous System/metabolism , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , HEK293 Cells , Humans , Molecular Structure , Piperidines/chemistry , Receptors, Opioid, delta/metabolism , Stereoisomerism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 22(2): 1169-73, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22197139

ABSTRACT

A novel series of piperazine derivatives exhibits sub-nanomolar binding and enhanced subtype selectivity as δ-opioid agonists. The synthesis and SAR are described as well as the application of computational models to improve in vitro ADME and safety properties suitable for CNS indications, specifically microsomal clearance, permeability, and hERG channel inhibition.


Subject(s)
Central Nervous System/drug effects , Piperazines/pharmacology , Receptors, Opioid, delta/agonists , Animals , Central Nervous System/metabolism , Computer Simulation , Dogs , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Humans , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Receptors, Opioid, delta/metabolism , Stereoisomerism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 13(2): 289-91, 2003 Jan 20.
Article in English | MEDLINE | ID: mdl-12482442

ABSTRACT

A series of imidazo[4,5-b]pyridines with a 7-(3-pyridyl) substituent is described as high affinity CRF receptor ligands. Individual analogues were synthesized from key intermediates obtained via palladium-catalyzed coupling of 3-pyridyl zinc or boronic acid organometallic intermediates with 2-benzyloxy-4-chloro-3-nitropyridine 12.


Subject(s)
Imidazoles/chemical synthesis , Imidazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Receptors, Corticotropin-Releasing Hormone/drug effects , Animals , Boronic Acids/chemistry , Catalysis , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Chemical Phenomena , Chemistry, Physical , In Vitro Techniques , Indicators and Reagents , Ligands , Palladium , Pyridines/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...