Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 12(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674771

ABSTRACT

This report describes acidic microbial mats containing cyanobacteria that are strongly associated to precipitated minerals in the source area of Río Tinto. Río Tinto (Huelva, Southwestern Spain) is an extreme acidic environment where iron and sulfur cycles play a fundamental role in sustaining the extremely low pH and the high concentration of heavy metals, while maintaining a high level of microbial diversity. These multi-layered mineral deposits are stable all year round and are characterized by a succession of thick greenish-blue and brownish layers mainly composed of natrojarosite. The temperature and absorbance above and below the mineral precipitates were followed and stable conditions were detected inside the mineral precipitates. Different methodologies, scanning and transmission electron microscopy, immunological detection, fluorescence in situ hybridization, and metagenomic analysis were used to describe the biodiversity existing in these microbial mats, demonstrating, for the first time, the existence of acid-tolerant cyanobacteria in a hyperacidic environment of below pH 1. Up to 0.46% of the classified sequences belong to cyanobacterial microorganisms, and 1.47% of the aligned DNA reads belong to the Cyanobacteria clade.

2.
Life (Basel) ; 11(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374247

ABSTRACT

The NASA/Dawn mission has acquired unprecedented measurements of the surface of the dwarf planet Ceres, the composition of which is a mixture of ultra-carbonaceous material, phyllosilicates, carbonates, organics, Fe-oxides, and volatiles as determined by remote sensing instruments including the VIR imaging spectrometer. We performed a refined analysis merging visible and infrared observations of Ceres' surface for the first time. The overall shape of the combined spectrum suggests another type of silicate not previously considered, and we confirmed a large abundance of carbon material. More importantly, by analyzing the local spectra of the organic-rich region of the Ernutet crater, we identified a reddening in the visible range, strongly correlated to the aliphatic signature at 3.4 µm. Similar reddening was found in the bright material making up Cerealia Facula in the Occator crater. This implies that organic material might be present in the source of the faculae, where brines and organics are mixed in an environment that may be favorable for prebiotic chemistry.

3.
Astrobiology ; 20(11): 1338-1352, 2020 11.
Article in English | MEDLINE | ID: mdl-33179967

ABSTRACT

Terrestrial simulations for crewed missions are critically important for testing technologies and improving methods and procedures for future robotic and human planetary exploration. In February 2018, AMADEE-18 simulated a mission to Mars in the Dhofar region of Oman. During the mission, a field crew coordinated by the Österreichisches Weltraum Forum (OeWF) accomplished several experiments in the fields of astrobiology, space physiology and medicine, geology, and geophysics. Within the scientific payload of AMADEE-18, ScanMars provided geophysical radar imaging of the subsurface at the simulated landing site and was operated by analog astronauts wearing spacesuits during extra-vehicular activities. The analog astronauts were trained to operate a ground-penetrating radar instrument that transmits and then collects radio waves carrying information about the geological setting of the first few meters of the subsurface. The data presented in this work show signal returns from structures down to 4 m depth, associated with the geology of the investigated rocks. Integrating radar data and the analog astronauts' observations of the geology at the surface, it was possible to identify the contact between shallow sediments and bedrock, the local occurrence of conductive soils, and the presence of pebbly materials in the shallow subsurface, which together describe the geology of recent loose sediments overlying an older deformed bedrock. The results obtained by ScanMars confirm that subsurface radar sounding at martian landing sites is key for the geological characterization at shallow depths. The geologic model of the subsurface can be used as the basis for reconstructing palaeoenvironments and paleo-habitats, thus assisting scientific investigations looking for traces of present or past life on the Red Planet. Highlights The ScanMars experiment brings a ground-penetrating radar to the AMADEE-18 simulated Mars mission. The ScanMars radar was operated following procedures and training developed before the mission. Approximately 2000 m of radar data profiles have been acquired during the analog mission. Combining the results for ScanMars, orbital remote sensing data, and first-person observation in the field while wearing spacesuits (analog astronauts), it was possible to generate a geological model at the AMADEE-18 study site.


Subject(s)
Extraterrestrial Environment , Mars , Radar , Space Simulation , Astronauts , Exobiology , Humans , Oman
4.
Sci Adv ; 4(3): e1701645, 2018 03.
Article in English | MEDLINE | ID: mdl-29546235

ABSTRACT

Different carbonates have been detected on Ceres, and their abundance and spatial distribution have been mapped using a visible and infrared mapping spectrometer (VIR), the Dawn imaging spectrometer. Carbonates are abundant and ubiquitous across the surface, but variations in the strength and position of infrared spectral absorptions indicate variations in the composition and amount of these minerals. Mg-Ca carbonates are detected all over the surface, but localized areas show Na carbonates, such as natrite (Na2CO3) and hydrated Na carbonates (for example, Na2CO3·H2O). Their geological settings and accessory NH4-bearing phases suggest the upwelling, excavation, and exposure of salts formed from Na-CO3-NH4-Cl brine solutions at multiple locations across the planet. The presence of the hydrated carbonates indicates that their formation/exposure on Ceres' surface is geologically recent and dehydration to the anhydrous form (Na2CO3) is ongoing, implying a still-evolving body.

5.
Sci Adv ; 4(3): eaao3757, 2018 03.
Article in English | MEDLINE | ID: mdl-29546238

ABSTRACT

The dwarf planet Ceres is known to host a considerable amount of water in its interior, and areas of water ice were detected by the Dawn spacecraft on its surface. Moreover, sporadic water and hydroxyl emissions have been observed from space telescopes. We report the detection of water ice in a mid-latitude crater and its unexpected variation with time. The Dawn spectrometer data show a change of water ice signatures over a period of 6 months, which is well modeled as ~2-km2 increase of water ice. The observed increase, coupled with Ceres' orbital parameters, points to an ongoing process that seems correlated with solar flux. The reported variation on Ceres' surface indicates that this body is chemically and physically active at the present time.

6.
Science ; 317(5845): 1715-8, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17885128

ABSTRACT

Mars' polar regions are covered with ice-rich layered deposits that potentially contain a record of climate variations. The sounding radar SHARAD on the Mars Reconnaissance Orbiter mapped detailed subsurface stratigraphy in the Promethei Lingula region of the south polar plateau, Planum Australe. Radar reflections interpreted as layers are correlated across adjacent orbits and are continuous for up to 150 kilometers along spacecraft orbital tracks. The reflectors are often separated into discrete reflector sequences, and strong echoes are seen as deep as 1 kilometer. In some cases, the sequences are dipping with respect to each other, suggesting an interdepositional period of erosion. In Australe Sulci, layers are exhumed, indicating recent erosion.


Subject(s)
Mars , Extraterrestrial Environment , Ice
7.
Science ; 316(5821): 92-5, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17363628

ABSTRACT

The ice-rich south polar layered deposits of Mars were probed with the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express orbiter. The radar signals penetrate deep into the deposits (more than 3.7 kilometers). For most of the area, a reflection is detected at a time delay that is consistent with an interface between the deposits and the substrate. The reflected power from this interface indicates minimal attenuation of the signal, suggesting a composition of nearly pure water ice. Maps were generated of the topography of the basal interface and the thickness of the layered deposits. A set of buried depressions is seen within 300 kilometers of the pole. The thickness map shows an asymmetric distribution of the deposits and regions of anomalous thickness. The total volume is estimated to be 1.6 x 10(6) cubic kilometers, which is equivalent to a global water layer approximately 11 meters thick.


Subject(s)
Ice , Mars , Water , Extraterrestrial Environment , Radar , Spacecraft
8.
Science ; 310(5756): 1925-8, 2005 Dec 23.
Article in English | MEDLINE | ID: mdl-16319122

ABSTRACT

The martian subsurface has been probed to kilometer depths by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument aboard the Mars Express orbiter. Signals penetrate the polar layered deposits, probably imaging the base of the deposits. Data from the northern lowlands of Chryse Planitia have revealed a shallowly buried quasi-circular structure about 250 kilometers in diameter that is interpreted to be an impact basin. In addition, a planar reflector associated with the basin structure may indicate the presence of a low-loss deposit that is more than 1 kilometer thick.

SELECTION OF CITATIONS
SEARCH DETAIL
...