Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Am J Sports Med ; : 3635465241248071, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742580

ABSTRACT

BACKGROUND: The understanding of noncontact anterior cruciate ligament (ACL) injury causation in soccer has improved over the past decades. Bidimensional video analyses have significantly augmented our awareness, representing to date the only practical method to describe injury biomechanics. However, the extent of the problem continues to raise serious concerns. PURPOSE: To advance our understanding of the causal pathways leading to ACL injury with a large-scale reconstruction of 3-dimensional (3D) whole-body joint kinematics of injuries that occurred to male elite soccer players, as well as to compare the joint angle time course among situational patterns. STUDY DESIGN: Descriptive laboratory study. METHODS: A total of 33 consecutive noncontact and indirect contact ACL injuries that occurred in 6 national and 2 international professional leagues (seasons 2020-2021 to 2022-2023 until December 2022) were analyzed: (1) multiview noncoaxial television images were inspected; (2) multiple camera views were taken from 400 ms before the initial ground contact to 200 ms after the injury frame; (3) a size-matched pitch was modeled and used to calibrate cameras; (4) a 3D skeletal model was adjusted to fit the player's pose in each frame/view; and (5) poses were interpolated, and Euler joint angles were extracted. RESULTS: The authors reconstructed the 3D lower limb joint kinematic curves preceding and during ACL injuries in 33 cases; notably, a sudden external (up to 5°) and then internal knee rotation was observed after the initial contact and before the injury frame. The overall kinematics at injury were knee moderately flexed (45.9°± 21.7°), abducted (4.3°± 5.1°), and externally rotated (3.0°± 6.4°); trunk shallowly flexed (17.4°± 12.5°) and rotated and tilted toward the injured side; and hip flexed (32.0°± 18.7°), abducted (31.1°± 12.0°), and slightly internally rotated (6.6°± 12.2°). Variable behaviors were observed at the ankle level. CONCLUSION: Via reconstruction of the sequence of whole-body joint motion leading to injury, we confirmed the accepted gross biomechanics (dynamic valgus trend). This study significantly enriches the current knowledge on multiplanar kinematic features (transverse and coronal plane rotations). Furthermore, it was shown that ACL injuries in male professional soccer players manifest through distinct biomechanical footprints related to the concurrent game situation. CLINICAL RELEVANCE: Interventions aimed at reducing ACL injuries in soccer should consider that environmental features (ie, situational patterns) affect injury mechanics.

2.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941218

ABSTRACT

The complexity of the human upper limb makes replicating it in a prosthetic device a significant challenge. With advancements in mechatronic developments involving the addition of a large number of degrees of freedom, novel control strategies are required. To accommodate this need, this study aims at developing an IMU-based control for the HannesARM upper-limb prosthetic device, as a proof-of-concept for new control strategies integrating data-fusion approaches. The natural human control of the upper-limb is based on different inputs that allow adaptive control. To mimic this in prostheses, the implementation of IMUs provides kinematic information of both the stump and the prosthesis to enrich the EMG control. The principle of operation is to decode upper limb movements by using a custom-made system and to replicate them in prosthetic arms improving the control algorithms. To evaluate the system's effectiveness, the custom algorithm's motion extraction was compared to a motion capture system using fifteen able-bodied subjects. The results showed that this system scored 0.16 ± 0.04 and 0.81 ± 0.12 in Root Mean Squared Error and Cross-Correlation compared to the motion capture system. Experimental results demonstrate how this work can extract valuable kinematic information necessary for new and improved control strategies, such as intention detection or pattern recognition, to allow users to perform a broader range of tasks and enhancing in turn their quality of life.


Subject(s)
Arm , Artificial Limbs , Humans , Quality of Life , Electromyography/methods , Upper Extremity
3.
Bioengineering (Basel) ; 10(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37892908

ABSTRACT

The understanding of the changes induced in the knee's kinematics by a Posterior Cruciate Ligament (PCL) injury is still rather incomplete. This computational study aimed to analyze how the internal loads are redistributed among the remaining ligaments when the PCL is lesioned at different degrees and to understand if there is a possibility to compensate for a PCL lesion by changing the hamstring's contraction in the second half of the swing phase. A musculoskeletal model of the knee joint was used for simulating a progressive PCL injury by gradually reducing the ligament stiffness. Then, in the model with a PCL residual stiffness at 15%, further dynamic simulations of walking were performed by progressively reducing the hamstring's force. In each condition, the ligaments tension, contact force and knee kinematics were analyzed. In the simulated PCL-injured knee, the Medial Collateral Ligament (MCL) became the main passive stabilizer of the tibial posterior translation, with synergistic recruitment of the Lateral Collateral Ligament. This resulted in an enhancement of the tibial-femoral contact force with respect to the intact knee. The reduction in the hamstring's force limited the tibial posterior sliding and, consequently, the tension of the ligaments compensating for PCL injury decreased, as did the tibiofemoral contact force. This study does not pretend to represent any specific population, since our musculoskeletal model represents a single subject. However, the implemented model could allow the non-invasive estimation of load redistribution in cases of PCL injury. Understanding the changes in the knee joint biomechanics could help clinicians to restore patients' joint stability and prevent joint degeneration.

4.
Sensors (Basel) ; 23(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687775

ABSTRACT

Persons post-stroke experience excessive muscle co-contraction, and consequently the arm functions are compromised during the activities of daily living. Therefore, identifying instrumental outcome measures able to detect the motor strategy adopted after a stroke is a primary clinical goal. Accordingly, this study aims at verifying whether the surface electromyography (sEMG)-based co-contraction index (CCI) could be a new clinically feasible approach for assessing and monitoring patients' motor performance. Thirty-four persons post-stroke underwent clinical assessment and upper extremity kinematic analysis, including sEMG recordings. The participants were randomized into two treatment groups (robot and usual care groups). Ten healthy subjects provided a normative reference (NR). Frost's CCI was used to quantify the muscle co-contraction of three different agonist/antagonist muscle pairs during an object-placing task. Persons post-stroke showed excessive muscle co-contraction (mean (95% CI): anterior/posterior deltoid CCI: 0.38 (0.34-0.41) p = 0.03; triceps/biceps CCI: 0.46 (0.41-0.50) p = 0.01) compared to NR (anterior/posterior deltoid CCI: 0.29 (0.21-0.36); triceps/biceps CCI: 0.34 (0.30-0.39)). After robot therapy, persons post-stroke exhibited a greater improvement (i.e., reduced CCI) in proximal motor control (anterior/posterior deltoid change score of CCI: -0.02 (-0.07-0.02) p = 0.05) compared to usual care therapy (0.04 (0.00-0.09)). Finally, the findings of the present study indicate that the sEMG-based CCI could be a valuable tool in clinical practice.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Electromyography , Activities of Daily Living , Pilot Projects , Upper Extremity
5.
Sensors (Basel) ; 23(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37430586

ABSTRACT

Although extensive literature exists on forward and backward walking, a comprehensive assessment of gait parameters on a wide and homogenous population is missing. Thus, the purpose of this study is to analyse the differences between the two gait typologies on a relatively large sample. Twenty-four healthy young adults participated in this study. By means of a marker-based optoelectronic system and force platforms, differences between forward and backward walking were outlined in terms of kinematics and kinetics. Statistically, significant differences were observed in most of the spatial-temporal parameters, evidencing some adaptation mechanisms in backward walking. Differently from the ankle joint, the hip and knee range of motion was significantly reduced when switching from forward to backward walking. In terms of kinetics, hip and ankle moment patterns for forward and backward walking were approximately mirrored images of each other. Moreover, joint powers appeared drastically reduced during reversed gait. Specifically, valuable differences in terms of produced and absorbed joint powers between forward and backward walking were pointed out. The outcomes of this study could represent a useful reference data for future investigation evaluating the efficacy of backward walking as a rehabilitation tool for pathological subjects.


Subject(s)
Acclimatization , Ankle Joint , Young Adult , Humans , Gait , Health Status , Kinetics
6.
Bioengineering (Basel) ; 11(1)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38247918

ABSTRACT

During the stance phase of a normal gait, the triceps surae muscle controls the advancement of the tibia, which contributes to knee extension. Plantar flexor weakness results in excessive dorsiflexion, and consequently, the knee loses this contribution. However, increasing knee flexion is also seen in patients with cerebral palsy who do not have plantar flexor weakness. We aimed to understand this mechanism through the use of a musculoskeletal dynamic model. The model consists of solid segments connected with rotatory joints and springs to represent individual muscles. It was positioned at different degrees of ankle plantarflexion, knee flexion, and hip flexion. The soleus muscle was activated concentrically to produce plantarflexion and push the foot against the ground. The resulting knee extension was analyzed. The principal determinant of knee flexion or extension associated with ankle plantarflexion was the position of the knee joint center. When this was anterior to the line of action of the ground reaction force (GRF), the soleus contraction resulted in increased knee flexion. The knee extension was obtained when the knee was flexed less than approximately 25°. The relation between joint angles, anthropometric parameters, and the position of the GRF was expressed in a mathematical formulation. The clinical relevance of this model is that it explains the failure of plantar flexor control on knee extension in patients with cerebral palsy, when increased knee flexion can occur even if there is a normal or plantarflexed foot position.

7.
Front Neurorobot ; 15: 683653, 2021.
Article in English | MEDLINE | ID: mdl-34557082

ABSTRACT

Enhancing the embodiment of artificial limbs-the individuals' feeling that a virtual or robotic limb is integrated in their own body scheme-is an impactful strategy for improving prosthetic technology acceptance and human-machine interaction. Most studies so far focused on visuo-tactile strategies to empower the embodiment processes. However, novel approaches could emerge from self-regulation techniques able to change the psychophysiological conditions of an individual. Accordingly, this pilot study investigates the effects of a self-regulated breathing exercise on the processes of body ownership underlying the embodiment of a virtual right hand within a Spatially Augmented Respiratory Biofeedback (SARB) setting. This investigation also aims at evaluating the feasibility of the breathing exercise enabled by a low-cost SARB implementation designed for upcoming remote studies (a need emerged during the COVID-19 pandemic). Twenty-two subjects without impairments, and two transradial prosthesis users for a preparatory test, were asked (in each condition of a within-group design) to maintain a normal (about 14 breaths/min) or slow (about 6 breaths/min) respiratory rate to keep a static virtual right hand "visible" on a screen. Meanwhile, a computer-generated sphere moved from left to right toward the virtual hand during each trial (1 min) of 16. If the participant's breathing rate was within the target (slow or normal) range, a visuo-tactile event was triggered by the sphere passing under the virtual hand (the subjects observed it shaking while they perceived a vibratory feedback generated by a smartphone). Our results-mainly based on questionnaire scores and proprioceptive drift-highlight that the slow breathing condition induced higher embodiment than the normal one. This preliminary study reveals the feasibility and potential of a novel psychophysiological training strategy to enhance the embodiment of artificial limbs. Future studies are needed to further investigate mechanisms, efficacy and generalizability of the SARB techniques in training a bionic limb embodiment.

8.
Sensors (Basel) ; 20(11)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32517139

ABSTRACT

Rehabilitation of the upper limb is an important aspect of the therapy for people affected by neuromotor diseases for the recovery of the capability to perform activities of daily living (ADLs). Nonetheless, the costs associated with the administration of rehabilitation therapy and the increasing number of patients highlight the need for new solutions. Technology-based solutions and, in particular, telerehabilitation could strongly impact in this field. In this paper, a new system based on radiofrequency (RF) technology is presented which is able to effectively provide home-based telerehabilitation and extract meaningful information on the therapy execution performance. The technology has been tuned to the needs of the rehabilitation system, optimizing the hardware, the communication protocol and the software control. A methodology for extracting the execution time of the rehabilitation tasks, the distance covered by the patient's hand in each subtask and the velocity profile is presented. The results show that a highly usable system for the rehabilitation of the upper limb has been developed using the RF technology and that performance metrics can be reliably extracted by the acquired signals.


Subject(s)
Radio Frequency Identification Device , Stroke Rehabilitation , Activities of Daily Living , Hand , Humans , Upper Extremity
9.
Clin Biomech (Bristol, Avon) ; 63: 140-146, 2019 03.
Article in English | MEDLINE | ID: mdl-30889433

ABSTRACT

BACKGROUND: Falls are one of the main concerns in people with Parkinson's disease, leading to poor quality of life and increased mortality. The sit-to-walk movement is the most frequent postural transition task during daily life and is highly demanding in terms of balance maintenance and muscular strength. METHODS: With the aim of identifying biomechanical variables of high risk of falling, we investigated the sit-to-walk task performed by 9 Parkinson's disease patients with at least one fall episode in the six months preceding this study, 15 Parkinson's disease patients without previous falls, and 20 healthy controls. Motor performance was evaluated with an optoelectronic system and two dynamometric force plates after overnight suspension of all dopaminergic drugs and one hour after consumption of a standard dose of levodopa/benserazide. FINDINGS: Poor trunk movements critically influenced the execution of the sit-to-walk movement in patients with a history of falling. The peak velocity of the trunk in the anterior-posterior direction discriminated faller from non-faller patients, with high specificity and sensitivity in both the medication-off and -on state. INTERPRETATION: Our results confirm the difficulties in merging consecutive motor tasks in patients with Parkinson's disease. Trunk movements during the sit-to-walk can provide valuable measurements to monitor and possibly predict the risk of falling.


Subject(s)
Accidental Falls/prevention & control , Parkinson Disease/physiopathology , Postural Balance , Sitting Position , Walking , Aged , Aged, 80 and over , Benserazide/administration & dosage , Case-Control Studies , Drug Combinations , Female , Humans , Levodopa/administration & dosage , Male , Middle Aged , Movement , Quality of Life , Sensitivity and Specificity
10.
IEEE Trans Haptics ; 10(3): 317-324, 2017.
Article in English | MEDLINE | ID: mdl-28114037

ABSTRACT

Artificial tactile sensing is a challenging research topic in robotics, motor control, and rehabilitation engineering encompassing multi-disciplinary skills and different technologies. This paper presents the development of a wearable tactile thimble system using MEMS barometric sensors and flexible printed circuit board. Barometric sensors were carefully processed to make them able to transduce contact forces. Thumb, index, and medium fingers were equipped with an array of six sensing elements each, covering the central, lateral, and medial aspects of the fingertip. The sensor integration, signal read-out and processing, hardware architecture of the device, along with the calibration protocol, were described. The test results showed adequate sensitivity at very low forces with an almost linear transduction range up to about 4N (RMSE: 0.04N). Tests on object manipulation tasks highlighted the value of the proposed system demonstrating the ability of measuring both the force amplitude and contact points, demonstrating the suitability of barometric sensors for tactile applications.


Subject(s)
Micro-Electrical-Mechanical Systems , Touch , Wearable Electronic Devices , Adult , Fingers , Humans , Psychomotor Performance , Transducers, Pressure , Young Adult
11.
PLoS One ; 9(4): e92736, 2014.
Article in English | MEDLINE | ID: mdl-24743294

ABSTRACT

Rett syndrome is an X-linked neurodevelopmental condition mainly characterized by loss of spoken language and a regression of purposeful hand use, with the development of distinctive hand stereotypies, and gait abnormalities. Gait initiation is the transition from quiet stance to steady-state condition of walking. The associated motor program seems to be centrally mediated and includes preparatory adjustments prior to any apparent voluntary movement of the lower limbs. Anticipatory postural adjustments contribute to postural stability and to create the propulsive forces necessary to reach steady-state gait at a predefined velocity and may be indicative of the effectiveness of the feedforward control of gait. In this study, we examined anticipatory postural adjustments associated with gait initiation in eleven girls with Rett syndrome and ten healthy subjects. Muscle activity (tibialis anterior and soleus muscles), ground reaction forces and body kinematic were recorded. Children with Rett syndrome showed a distinctive impairment in temporal organization of all phases of the anticipatory postural adjustments. The lack of appropriate temporal scaling resulted in a diminished impulse to move forward, documented by an impairment in several parameters describing the efficiency of gait start: length and velocity of the first step, magnitude and orientation of centre of pressure-centre of mass vector at the instant of (swing-)toe off. These findings were related to an abnormal muscular activation pattern mainly characterized by a disruption of the synergistic activity of antagonistic pairs of postural muscles. This study showed that girls with Rett syndrome lack accurate tuning of feedforward control of gait.


Subject(s)
Gait , Rett Syndrome/physiopathology , Biomechanical Phenomena , Child , Female , Humans , Male , Motor Activity
SELECTION OF CITATIONS
SEARCH DETAIL
...