Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
3.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762135

ABSTRACT

(1) The role of the immune response in the pathogenesis of idiopathic pulmonary fibrosis (IPF) remains controversial. We hypothesized that peripheral blood immune phenotypes will be different in IPF patients and may relate to the disease severity and progression. (2) Whole blood flow cytometry staining was performed at diagnosis in 32 IPF patients, and in 32 age- and smoking-matched healthy controls. Thirty-one IPF patients were followed up for one year and categorized as stable or progressors based on lung function, deterioration and/or death. At 18-60 months, immunophenotypes were characterized again. (3) The main results showed that: (1) compared to matched controls, at diagnosis, patients with IPF showed more neutrophils, CD8+HLA-DR+ and CD8+CD28- T cells, and fewer B lymphocytes and naïve T cells; (2) in IPF, circulating neutrophils, eosinophils and naïve T cells were associated with lung function abnormalities; (3) patients whose disease progressed during the 12 months of follow-up showed evidence of cytotoxic dysregulation, with increased CD8+CD28- T cells, decreased naïve T cells and an inverted CD4/CD8 ratio at baseline; and (4) blood cell alterations were stable over time in survivors. (4) IPF is associated with abnormalities in circulating immune cells, particularly in the cytotoxic cell domain. Patients with progressive IPF, despite antifibrotic therapy, present an over-activated and exhausted immunophenotype at diagnosis, which is maintained over time.


Subject(s)
CD28 Antigens , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , T-Lymphocytes , Flow Cytometry , Patient Acuity , Disease Progression
4.
Respir Res ; 24(1): 236, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770891

ABSTRACT

BACKGROUND: The role of the immune system in the pathobiology of Idiopathic Pulmonary Fibrosis (IPF) is controversial. METHODS: To investigate it, we calculated immune signatures with Gene Set Variation Analysis (GSVA) and applied them to the lung transcriptome followed by unbiased cluster analysis of GSVA immune-enrichment scores, in 109 IPF patients from the Lung Tissue Research Consortium (LTRC). Results were validated experimentally using cell-based methods (flow cytometry) in lung tissue of IPF patients from the University of Pittsburgh (n = 26). Finally, differential gene expression and hypergeometric test were used to explore non-immune differences between clusters. RESULTS: We identified two clusters (C#1 and C#2) of IPF patients of similar size in the LTRC dataset. C#1 included 58 patients (53%) with enrichment in GSVA immune signatures, particularly cytotoxic and memory T cells signatures, whereas C#2 included 51 patients (47%) with an overall lower expression of GSVA immune signatures (results were validated by flow cytometry with similar unbiased clustering generation). Differential gene expression between clusters identified differences in cilium, epithelial and secretory cell genes, all of them showing an inverse correlation with the immune response signatures. Notably, both clusters showed distinct features despite clinical similarities. CONCLUSIONS: In end-stage IPF lung tissue, we identified two clusters of patients with very different levels of immune signatures and gene expression but with similar clinical characteristics. Weather these immune clusters differentiate diverse disease trajectories remains unexplored.


Subject(s)
Gene Expression Profiling , Idiopathic Pulmonary Fibrosis , Humans , Gene Expression Profiling/methods , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...