Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 452
Filter
1.
Mol Genet Genomics ; 299(1): 65, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972030

ABSTRACT

BACKGROUND: A large number of challenging medically relevant genes (CMRGs) are situated in complex or highly repetitive regions of the human genome, hindering comprehensive characterization of genetic variants using next-generation sequencing technologies. In this study, we employed long-read sequencing technology, extensively utilized in studying complex genomic regions, to characterize genetic alterations, including short variants (single nucleotide variants and short insertions and deletions) and copy number variations, in 370 CMRGs across 41 individuals from 19 global populations. RESULTS: Our analysis revealed high levels of genetic variants in CMRGs, with 68.73% exhibiting copy number variations and 65.20% containing short variants that may disrupt protein function across individuals. Such variants can influence pharmacogenomics, genetic disease susceptibility, and other clinical outcomes. We observed significant differences in CMRG variation across populations, with individuals of African ancestry harboring the highest number of copy number variants and short variants compared to samples from other continents. Notably, 15.79% to 33.96% of short variants were exclusively detectable through long-read sequencing. While the T2T-CHM13 reference genome significantly improved the assembly of CMRG regions, thereby facilitating variant detection in these regions, some regions still lacked resolution. CONCLUSION: Our results provide an important reference for future clinical and pharmacogenetic studies, highlighting the need for a comprehensive representation of global genetic diversity in the reference genome and improved variant calling techniques to fully resolve medically relevant genes.


Subject(s)
DNA Copy Number Variations , Genome, Human , High-Throughput Nucleotide Sequencing , Humans , DNA Copy Number Variations/genetics , High-Throughput Nucleotide Sequencing/methods , Genome, Human/genetics , Polymorphism, Single Nucleotide/genetics , Genetic Variation/genetics , Genetic Predisposition to Disease , Genetics, Population/methods , INDEL Mutation
2.
Nat Commun ; 15(1): 5327, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909018

ABSTRACT

The assignment of variants across haplotypes, phasing, is crucial for predicting the consequences, interaction, and inheritance of mutations and is a key step in improving our understanding of phenotype and disease. However, phasing is limited by read length and stretches of homozygosity along the genome. To overcome this limitation, we designed MethPhaser, a method that utilizes methylation signals from Oxford Nanopore Technologies to extend Single Nucleotide Variation (SNV)-based phasing. We demonstrate that haplotype-specific methylations extensively exist in Human genomes and the advent of long-read technologies enabled direct report of methylation signals. For ONT R9 and R10 cell line data, we increase the phase length N50 by 78%-151% at a phasing accuracy of 83.4-98.7% To assess the impact of tissue purity and random methylation signals due to inactivation, we also applied MethPhaser on blood samples from 4 patients, still showing improvements over SNV-only phasing. MethPhaser further improves phasing across HLA and multiple other medically relevant genes, improving our understanding of how mutations interact across multiple phenotypes. The concept of MethPhaser can also be extended to non-human diploid genomes. MethPhaser is available at https://github.com/treangenlab/methphaser .


Subject(s)
DNA Methylation , Genome, Human , Haplotypes , Polymorphism, Single Nucleotide , Humans , Cell Line , Mutation
3.
Cell Genom ; 4(7): 100590, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38908378

ABSTRACT

The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a complex genomic rearrangement (CGR). Although it has been identified as an important pathogenic DNA mutation signature in genomic disorders and cancer genomes, its architecture remains unresolved. Here, we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the DNA of 24 patients identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted structural variant (SV) haplotypes. Using a combination of short-read genome sequencing (GS), long-read GS, optical genome mapping, and single-cell DNA template strand sequencing (strand-seq), the haplotype structure was resolved in 18 samples. The point of template switching in 4 samples was shown to be a segment of ∼2.2-5.5 kb of 100% nucleotide similarity within inverted repeat pairs. These data provide experimental evidence that inverted low-copy repeats act as recombinant substrates. This type of CGR can result in multiple conformers generating diverse SV haplotypes in susceptible dosage-sensitive loci.


Subject(s)
Haplotypes , Humans , Haplotypes/genetics , Comparative Genomic Hybridization , Genomic Structural Variation/genetics , Genome, Human/genetics , Gene Duplication/genetics
4.
Genome Biol Evol ; 16(5)2024 05 02.
Article in English | MEDLINE | ID: mdl-38758096

ABSTRACT

The coppery titi monkey (Plecturocebus cupreus) is an emerging nonhuman primate model system for behavioral and neurobiological research. At the same time, the almost entire absence of genomic resources for the species has hampered insights into the genetic underpinnings of the phenotypic traits of interest. To facilitate future genotype-to-phenotype studies, we here present a high-quality, fully annotated de novo genome assembly for the species with chromosome-length scaffolds spanning the autosomes and chromosome X (scaffold N50 = 130.8 Mb), constructed using data obtained from several orthologous short- and long-read sequencing and scaffolding techniques. With a base-level accuracy of ∼99.99% in chromosome-length scaffolds as well as benchmarking universal single-copy ortholog and k-mer completeness scores of >99.0% and 95.1% at the genome level, this assembly represents one of the most complete Pitheciidae genomes to date, making it an invaluable resource for comparative evolutionary genomics research to improve our understanding of lineage-specific changes underlying adaptive traits as well as deleterious mutations associated with disease.


Subject(s)
Genome , Pitheciidae , Animals , Pitheciidae/genetics , Genomics , Models, Animal
5.
medRxiv ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38712270

ABSTRACT

Both long-read genome sequencing (lrGS) and the recently published Telomere to Telomere (T2T) reference genome provide increased coverage and resolution across repetitive regions promising heightened structural variant detection and improved mapping. Inversions (INV), intrachromosomal segments which are rotated 180° and inserted back into the same chromosome, are a class of structural variants particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage sensitive genes in cis . Here we remapped the genome data from six individuals carrying unsolved cytogenetically detected inversions. An INV6 and INV10 were resolved using GRCh38 and T2T-CHM13. Finally, an INV9 required optical genome mapping, de novo assembly of lrGS data and T2T-CHM13. This inversion disrupted intron 25 of EHMT1, confirming a diagnosis of Kleefstra syndrome 1 (MIM#610253). These three inversions, only mappable in specific references, prompted us to investigate the presence and population frequencies of differential reference regions (DRRs) between T2T-CHM13, GRCh37, GRCh38, the chimpanzee and bonobo, and hundreds of megabases of DRRs were identified. Our results emphasize the significance of the chosen reference genome and the added benefits of lrGS and optical genome mapping in solving rearrangements in challenging regions of the genome. This is particularly important for inversions and may impact clinical diagnostics.

6.
NPJ Parkinsons Dis ; 10(1): 108, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789445

ABSTRACT

A biallelic (AAGGG) expansion in the poly(A) tail of an AluSx3 transposable element within the gene RFC1 is a frequent cause of cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS), and more recently, has been reported as a rare cause of Parkinson's disease (PD) in the Finnish population. Here, we investigate the prevalence of RFC1 (AAGGG) expansions in PD patients of non-Finnish European ancestry in 1609 individuals from the Parkinson's Progression Markers Initiative study. We identified four PD patients carrying the biallelic RFC1 (AAGGG) expansion and did not identify any carriers in controls.

7.
Nat Methods ; 21(6): 954-966, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689099

ABSTRACT

Long-read sequencing has recently transformed metagenomics, enhancing strain-level pathogen characterization, enabling accurate and complete metagenome-assembled genomes, and improving microbiome taxonomic classification and profiling. These advancements are not only due to improvements in sequencing accuracy, but also happening across rapidly changing analysis methods. In this Review, we explore long-read sequencing's profound impact on metagenomics, focusing on computational pipelines for genome assembly, taxonomic characterization and variant detection, to summarize recent advancements in the field and provide an overview of available analytical methods to fully leverage long reads. We provide insights into the advantages and disadvantages of long reads over short reads and their evolution from the early days of long-read sequencing to their recent impact on metagenomics and clinical diagnostics. We further point out remaining challenges for the field such as the integration of methylation signals in sub-strain analysis and the lack of benchmarks.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenome , Metagenomics , Microbiota , Metagenomics/methods , Metagenome/genetics , High-Throughput Nucleotide Sequencing/methods , Microbiota/genetics , Humans , Sequence Analysis, DNA/methods , Computational Biology/methods
8.
medRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562723

ABSTRACT

Comprehending the mechanism behind human diseases with an established heritable component represents the forefront of personalized medicine. Nevertheless, numerous medically important genes are inaccurately represented in short-read sequencing data analysis due to their complexity and repetitiveness or the so-called 'dark regions' of the human genome. The advent of PacBio as a long-read platform has provided new insights, yet HiFi whole-genome sequencing (WGS) cost remains frequently prohibitive. We introduce a targeted sequencing and analysis framework, Twist Alliance Dark Genes Panel (TADGP), designed to offer phased variants across 389 medically important yet complex autosomal genes. We highlight TADGP accuracy across eleven control samples and compare it to WGS. This demonstrates that TADGP achieves variant calling accuracy comparable to HiFi-WGS data, but at a fraction of the cost. Thus, enabling scalability and broad applicability for studying rare diseases or complementing previously sequenced samples to gain insights into these complex genes. TADGP revealed several candidate variants across all cases and provided insight into LPA diversity when tested on samples from rare disease and cardiovascular disease cohorts. In both cohorts, we identified novel variants affecting individual disease-associated genes (e.g., IKZF1, KCNE1). Nevertheless, the annotation of the variants across these 389 medically important genes remains challenging due to their underrepresentation in ClinVar and gnomAD. Consequently, we also offer an annotation resource to enhance the evaluation and prioritization of these variants. Overall, we can demonstrate that TADGP offers a cost-efficient and scalable approach to routinely assess the dark regions of the human genome with clinical relevance.

9.
medRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562786

ABSTRACT

The complexities of cancer genomes are becoming more easily interpreted due to advancements in sequencing technologies and improved bioinformatic analysis. Structural variants (SVs) represent an important subset of somatic events in tumors. While detection of SVs has been markedly improved by the development of long-read sequencing, somatic variant identification and annotation remains challenging. We hypothesized that use of a completed human reference genome (CHM13-T2T) would improve somatic SV calling. Our findings in a tumour/normal matched benchmark sample and two patient samples show that the CHM13-T2T improves SV detection and prioritization accuracy compared to GRCh38, with a notable reduction in false positive calls. We also overcame the lack of annotation resources for CHM13-T2T by lifting over CHM13-T2T-aligned reads to the GRCh38 genome, therefore combining both improved alignment and advanced annotations. In this process, we assessed the current SV benchmark set for COLO829/COLO829BL across four replicates sequenced at different centers with different long-read technologies. We discovered instability of this cell line across these replicates; 346 SVs (1.13%) were only discoverable in a single replicate. We identify 49 somatic SVs, which appear to be stable as they are consistently present across the four replicates. As such, we propose this consensus set as an updated benchmark for somatic SV calling and include both GRCh38 and CHM13-T2T coordinates in our benchmark. The benchmark is available at: 10.5281/zenodo.10819636 Our work demonstrates new approaches to optimize somatic SV prioritization in cancer with potential improvements in other genetic diseases.

10.
Nat Biotechnol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671154

ABSTRACT

Tandem repeats (TRs) are highly polymorphic in the human genome, have thousands of associated molecular traits and are linked to over 60 disease phenotypes. However, they are often excluded from at-scale studies because of challenges with variant calling and representation, as well as a lack of a genome-wide standard. Here, to promote the development of TR methods, we created a catalog of TR regions and explored TR properties across 86 haplotype-resolved long-read human assemblies. We curated variants from the Genome in a Bottle (GIAB) HG002 individual to create a TR dataset to benchmark existing and future TR analysis methods. We also present an improved variant comparison method that handles variants greater than 4 bp in length and varying allelic representation. The 8.1% of the genome covered by the TR catalog holds ~24.9% of variants per individual, including 124,728 small and 17,988 large variants for the GIAB HG002 'truth-set' TR benchmark. We demonstrate the utility of this pipeline across short-read and long-read technologies.

11.
medRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496498

ABSTRACT

Less than half of individuals with a suspected Mendelian condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.

12.
Cell Rep Med ; 5(3): 101446, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38442712

ABSTRACT

Germline variation and somatic alterations contribute to the molecular profile of cancers. We combine RNA with whole genome sequencing across 1,218 cancer patients to determine the extent germline structural variants (SVs) impact expression of nearby genes. For hundreds of genes, recurrent and common germline SV breakpoints within 100 kb associate with increased or decreased expression in tumors spanning various tissues of origin. A significant fraction of germline SV expression associations involves duplication of intergenic enhancers or 3' UTR disruption. Genes altered by both somatic and germline SVs include ATRX and CEBPA. Genes essential in cancer cell lines include BARD1 and IRS2. Genes with both expression and germline SV breakpoint patterns associated with patient survival include GCLM. Our results capture a class of phenotypic variation at work in the disease setting, including genes with cancer roles. Specific germline SVs represent potential cancer risk variants for genetic testing, including those involving genes with targeting implications.


Subject(s)
Neoplasms , Transcriptome , Humans , Transcriptome/genetics , Neoplasms/genetics , RNA , Germ Cells
13.
Virus Evol ; 10(1): vead086, 2024.
Article in English | MEDLINE | ID: mdl-38361816

ABSTRACT

Respiratory syncytial virus (RSV) infection in immunocompromised individuals often leads to prolonged illness, progression to severe lower respiratory tract infection, and even death. How the host immune environment of the hematopoietic stem cell transplant (HCT) adults can affect viral genetic variation during an acute infection is not understood well. In the present study, we performed whole genome sequencing of RSV/A or RSV/B from samples collected longitudinally from HCT adults with normal (<14 days) and delayed (≥14 days) RSV clearance who were enrolled in a ribavirin trial. We determined the inter-host and intra-host genetic variation of RSV and the effect of mutations on putative glycosylation sites. The inter-host variation of RSV is centered in the attachment (G) and fusion (F) glycoprotein genes followed by polymerase (L) and matrix (M) genes. Interestingly, the overall genetic variation was constant between normal and delayed clearance groups for both RSV/A and RSV/B. Intra-host variation primarily occurred in the G gene followed by non-structural protein (NS1) and L genes; however, gain or loss of stop codons and frameshift mutations appeared only in the G gene and only in the delayed viral clearance group. Potential gain or loss of O-linked glycosylation sites in the G gene occurred both in RSV/A and RSV/B isolates. For RSV F gene, loss of N-linked glycosylation site occurred in three RSV/B isolates within an antigenic epitope. Both oral and aerosolized ribavirin did not cause any mutations in the L gene. In summary, prolonged viral shedding and immune deficiency resulted in RSV variation, especially in structural mutations in the G gene, possibly associated with immune evasion. Therefore, sequencing and monitoring of RSV isolates from immunocompromised patients are crucial as they can create escape mutants that can impact the effectiveness of upcoming vaccines and treatments.

15.
Nat Biotechnol ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168980

ABSTRACT

Calling structural variations (SVs) is technically challenging, but using long reads remains the most accurate way to identify complex genomic alterations. Here we present Sniffles2, which improves over current methods by implementing a repeat aware clustering coupled with a fast consensus sequence and coverage-adaptive filtering. Sniffles2 is 11.8 times faster and 29% more accurate than state-of-the-art SV callers across different coverages (5-50×), sequencing technologies (ONT and HiFi) and SV types. Furthermore, Sniffles2 solves the problem of family-level to population-level SV calling to produce fully genotyped VCF files. Across 11 probands, we accurately identified causative SVs around MECP2, including highly complex alleles with three overlapping SVs. Sniffles2 also enables the detection of mosaic SVs in bulk long-read data. As a result, we identified multiple mosaic SVs in brain tissue from a patient with multiple system atrophy. The identified SV showed a remarkable diversity within the cingulate cortex, impacting both genes involved in neuron function and repetitive elements.

16.
Nat Biotechnol ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168995

ABSTRACT

Tandem repeat (TR) variation is associated with gene expression changes and numerous rare monogenic diseases. Although long-read sequencing provides accurate full-length sequences and methylation of TRs, there is still a need for computational methods to profile TRs across the genome. Here we introduce the Tandem Repeat Genotyping Tool (TRGT) and an accompanying TR database. TRGT determines the consensus sequences and methylation levels of specified TRs from PacBio HiFi sequencing data. It also reports reads that support each repeat allele. These reads can be subsequently visualized with a companion TR visualization tool. Assessing 937,122 TRs, TRGT showed a Mendelian concordance of 98.38%, allowing a single repeat unit difference. In six samples with known repeat expansions, TRGT detected all expansions while also identifying methylation signals and mosaicism and providing finer repeat length resolution than existing methods. Additionally, we released a database with allele sequences and methylation levels for 937,122 TRs across 100 genomes.

17.
bioRxiv ; 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38260545

ABSTRACT

Research and medical genomics require comprehensive and scalable solutions to drive the discovery of novel disease targets, evolutionary drivers, and genetic markers with clinical significance. This necessitates a framework to identify all types of variants independent of their size (e.g., SNV/SV) or location (e.g., repeats). Here we present DRAGEN that utilizes novel methods based on multigenomes, hardware acceleration, and machine learning based variant detection to provide novel insights into individual genomes with ~30min computation time (from raw reads to variant detection). DRAGEN outperforms all other state-of-the-art methods in speed and accuracy across all variant types (SNV, indel, STR, SV, CNV) and further incorporates specialized methods to obtain key insights in medically relevant genes (e.g., HLA, SMN, GBA). We showcase DRAGEN across 3,202 genomes and demonstrate its scalability, accuracy, and innovations to further advance the integration of comprehensive genomics for research and medical applications.

18.
Nat Biotechnol ; 42(1): 139-147, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37081138

ABSTRACT

Current methods for inference of phylogenetic trees require running complex pipelines at substantial computational and labor costs, with additional constraints in sequencing coverage, assembly and annotation quality, especially for large datasets. To overcome these challenges, we present Read2Tree, which directly processes raw sequencing reads into groups of corresponding genes and bypasses traditional steps in phylogeny inference, such as genome assembly, annotation and all-versus-all sequence comparisons, while retaining accuracy. In a benchmark encompassing a broad variety of datasets, Read2Tree is 10-100 times faster than assembly-based approaches and in most cases more accurate-the exception being when sequencing coverage is high and reference species very distant. Here, to illustrate the broad applicability of the tool, we reconstruct a yeast tree of life of 435 species spanning 590 million years of evolution. We also apply Read2Tree to >10,000 Coronaviridae samples, accurately classifying highly diverse animal samples and near-identical severe acute respiratory syndrome coronavirus 2 sequences on a single tree. The speed, accuracy and versatility of Read2Tree enable comparative genomics at scale.


Subject(s)
Genomics , Animals , Phylogeny , Sequence Analysis , Genomics/methods
19.
Nat Methods ; 21(1): 41-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036856

ABSTRACT

Complete, telomere-to-telomere (T2T) genome assemblies promise improved analyses and the discovery of new variants, but many essential genomic resources remain associated with older reference genomes. Thus, there is a need to translate genomic features and read alignments between references. Here we describe a method called levioSAM2 that performs fast and accurate lift-over between assemblies using a whole-genome map. In addition to enabling the use of several references, we demonstrate that aligning reads to a high-quality reference (for example, T2T-CHM13) and lifting to an older reference (for example, Genome reference Consortium (GRC)h38) improves the accuracy of the resulting variant calls on the old reference. By leveraging the quality improvements of T2T-CHM13, levioSAM2 reduces small and structural variant calling errors compared with GRC-based mapping using real short- and long-read datasets. Performance is especially improved for a set of complex medically relevant genes, where the GRC references are lower quality.


Subject(s)
Genome , Genomics , Sequence Analysis, DNA/methods , Genomics/methods , Chromosome Mapping , High-Throughput Nucleotide Sequencing
20.
bioRxiv ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37961319

ABSTRACT

Tandem repeats (TRs) are highly polymorphic in the human genome, have thousands of associated molecular traits, and are linked to over 60 disease phenotypes. However, their complexity often excludes them from at-scale studies due to challenges with variant calling, representation, and lack of a genome-wide standard. To promote TR methods development, we create a comprehensive catalog of TR regions and explore its properties across 86 samples. We then curate variants from the GIAB HG002 individual to create a tandem repeat benchmark. We also present a variant comparison method that handles small and large alleles and varying allelic representation. The 8.1% of the genome covered by the TR catalog holds ∼24.9% of variants per individual, including 124,728 small and 17,988 large variants for the GIAB HG002 TR benchmark. We work with the GIAB community to demonstrate the utility of this benchmark across short and long read technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...