Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 20(1): 213, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737190

ABSTRACT

BACKGROUND: Type I interferons (IFN-I) are fundamental in controlling viral infections but fatal interferonopathy is restricted in the immune-privileged central nervous system (CNS). In contrast to the well-established role of Interferon Regulatory Factor 7 (IRF7) in the regulation of IFN-I response in the periphery, little is known about the specific function in the CNS. METHODS: To investigate the role for IRF7 in antiviral response during neurotropic virus infection, mice deficient for IRF3 and IRF7 were infected systemically with Langat virus (LGTV). Viral burden and IFN-I response was analyzed in the periphery and the CNS by focus formation assay, RT-PCR, immunohistochemistry and in vivo imaging. Microglia and infiltration of CNS-infiltration of immune cells were characterized by flow cytometry. RESULTS: Here, we demonstrate that during infection with the neurotropic Langat virus (LGTV), an attenuated member of the tick-borne encephalitis virus (TBEV) subgroup, neurons do not rely on IRF7 for cell-intrinsic antiviral resistance and IFN-I induction. An increased viral replication in IRF7-deficient mice suggests an indirect antiviral mechanism. Astrocytes rely on IRF7 to establish a cell-autonomous antiviral response. Notably, the loss of IRF7 particularly in astrocytes resulted in a high IFN-I production. Sustained production of IFN-I in astrocytes is independent of an IRF7-mediated positive feedback loop. CONCLUSION: IFN-I induction in the CNS is profoundly regulated in a cell type-specific fashion.


Subject(s)
Encephalitis, Tick-Borne , Interferon Regulatory Factor-7 , Interferon Type I , Animals , Mice , Antibodies , Astrocytes , Central Nervous System , Interferon Regulatory Factor-7/genetics , Encephalitis, Tick-Borne/immunology
2.
J Neuroinflammation ; 17(1): 278, 2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32951602

ABSTRACT

BACKGROUND: Tick-borne encephalitis virus (TBEV) is an important human pathogen that can cause the serious illness tick-borne encephalitis (TBE). Patients with clinical symptoms can suffer from severe meningoencephalitis with sequelae that include cognitive disorders and paralysis. While less than 30% of patients with clinical symptoms develop meningoencephalitis, the number of seropositive individuals in some regions indicates a much higher prevalence of TBEV infections, either with no or subclinical symptoms. The functional relevance of these subclinical TBEV infections and their influence on brain functions, such as learning and memory, has not been investigated so far. METHODS: To compare the effect of low and high viral replication in the brain, wildtype and Irf-7-/- mice were infected with Langat virus (LGTV), which belongs to the TBEV-serogroup. The viral burden was analyzed in the olfactory bulb and the hippocampus. Open field, elevated plus maze, and Morris water maze experiments were performed to determine the impact on anxiety-like behavior, learning, and memory formation. Spine density of hippocampal neurons and activation of microglia and astrocytes were analyzed. RESULTS: In contrast to susceptible Irf-7-/- mice, wildtype mice showed no disease signs upon LGTV infection. Detection of viral RNA in the olfactory bulb revealed CNS infections in wildtype and Irf-7-/- mice. Very low levels of viral replication were detectable in the hippocampus of wildtype mice. Although wildtype mice develop no disease signs, they showed reduced anxiety-like behavior and impaired memory formation, whereas Irf-7-/- mice were not affected. This impairment was associated with a significant decrease in spine density of neurons in the hippocampal CA1 region of wildtype mice. Microglia activation and astrogliosis were detected in the hippocampus. CONCLUSION: In this study, we demonstrate that subclinical infections by viruses from the TBEV-serogroup affected anxiety-like behavior. Virus replication in the olfactory bulb induced far-reaching effects on hippocampal neuron morphology and impaired hippocampus-dependent learning and memory formation.


Subject(s)
Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis, Tick-Borne/pathology , Hippocampus/pathology , Hippocampus/virology , Neurons/pathology , Neurons/virology , Animals , Female , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...