Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
NMR Biomed ; : e5217, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39077882

ABSTRACT

Spectroscopic imaging, rooted in Dixon's two-echo spin sequence to distinguish water and fat, has evolved significantly in acquisition and processing. Yet precise fat quantification remains a persistent challenge in ongoing research. With adequate phase characterization and correction, the fat composition models will impact measurements of fatty tissue. However, the effect of the used fat model in low-fat regions such as healthy muscle is unknown. In this study, we investigate the effect of assumed fat composition, in terms of chain length and double bond count, on fat fraction quantification in healthy muscle, while addressing phase and relaxometry confounders. For this purpose, we acquired bilateral thigh datasets from 38 healthy volunteers. Fat fractions were estimated using the IDEAL algorithm employing three different fat models fitted with and without the initial phase constrained. After data processing and model fitting, we used a convolutional neural net to automatically segment all thigh muscles and subcutaneous fat to evaluate the fitted parameters. The fat composition was compared with those reported in the literature. Overall, all the observed estimated fat composition values fall within the range of previously reported fatty acid composition based on gas chromatography measurements. All methods and models revealed different estimates of the muscle fat fractions in various evaluated muscle groups. Lateral differences changed from 0.5% to 5.3% in the hamstring muscle groups depending on the chosen method. The lowest observed left-right differences in each muscle group were all for the fat model estimating the number of double bonds with the initial phase unconstrained. With this model, the left-right differences were 0.64% ± 0.31%, 0.50% ± 0.27%, and 0.50% ± 0.40% for the quadriceps, hamstrings, and adductors muscle groups, respectively. Our findings suggest that a fat model estimating double bond numbers while allowing separate phases for each chemical species, given some assumptions, yields the best fat fraction estimate for our dataset.

2.
J Neuromuscul Dis ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39031378

ABSTRACT

Background: Sporadic inclusion body myositis (sIBM) is the predominant idiopathic inflammatory myopathy (IIM) in older people. Limitations of classical clinical assessments have been discussed as possible explanations for failed clinical trials, underlining the need for more sensitive outcome measures. Quantitative muscle MRI (qMRI) is a promising candidate for evaluating and monitoring sIBM. Objective: Longitudinal assessment of qMRI in sIBM patients. Methods: We evaluated fifteen lower extremity muscles of 12 sIBM patients (5 females, mean age 69.6, BMI 27.8) and 12 healthy age- and gender-matched controls. Seven patients and matched controls underwent a follow-up evaluation after one year. Clinical assessment included testing for muscle strength with Quick Motor Function Measure (QMFM), IBM functional rating scale (IBM-FRS), and gait analysis (6-minute walking distance). 3T-MRI scans of the lower extremities were performed, including a Dixon-based sequence, T2 mapping and Diffusion Tensor Imaging. The qMRI-values fat-fraction (FF), water T2 relaxation time (wT2), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ1), and radial diffusivity (RD) were analysed. Results: Compared to healthy controls, significant differences for all qMRI parameters averaged over all muscles were found in sIBM using a MANOVA (p < 0.001). In low-fat muscles (FF < 10% ), a significant increase of wT2 and FA with an accompanying decrease of MD, λ1, and RD was observed (p≤0.020). The highest correlation with clinical assessments was found for wT2 values in thigh muscles (r≤-0.634). Significant changes of FF (+3.0% ), wT2 (+0.6 ms), MD (-0.04 10 - 3mm2/s), λ1 (-0.05 10 - 3mm2/s), and RD (-0.03 10 - 3mm2/s) were observed in the longitudinal evaluation of sIBM patients (p≤0.001). FA showed no significant change (p = 0.242). Conclusion: qMRI metrics correlate with clinical findings and can reflect different ongoing pathophysiological mechanisms. While wT2 is an emerging marker of disease activity, the role of diffusion metrics, possibly reflecting changes in fibre size and intracellular deposits, remains subject to further investigations.

3.
NMR Biomed ; : e5214, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982853

ABSTRACT

Quantitative muscle magnetic resonance imaging (qMRI) is a valuable methodology for assessing muscular injuries and neuromuscular disorders. Notably, muscle diffusion tensor imaging (DTI) gives insights into muscle microstructural and macrostructural characteristics. However, the long-term reproducibility and robustness of these measurements remain relatively unexplored. The purpose of this prospective longitudinal cohort study was to assess the long-term robustness and range of variation of qMRI parameters, especially DTI metrics, in the lower extremity muscles of healthy controls under real-life conditions. Twelve volunteers (seven females, age 44.1 ± 12.1 years, body mass index 23.3 ± 2.0 kg/m2) underwent five leg muscle MRI sessions every 20 ± 4 weeks over a total period of 1.5 years. A multiecho gradient-echo Dixon-based sequence, a multiecho spin-echo T2-mapping sequence, and a spin-echo echo planar imaging diffusion-weighted sequence were acquired bilaterally with a Philips 3-T Achieva MR System using a 16-channel torso coil. Fifteen leg muscles were segmented in both lower extremities. qMRI parameters, including fat fraction (FF), water T2 relaxation time, and the diffusion metrics fractional anisotropy (FA) and mean diffusivity (MD), were evaluated. Coefficients of variance (wsCV) and intraclass correlation coefficients (ICCs) were calculated to assess the reproducibility of qMRI parameters. The standard error of measurement (SEM) and the minimal detectable change (MDC) were calculated to determine the range of variation. All tests were applied to all muscles and, subsequently, to each muscle separately. wsCV showed good reproducibility (≤ 10%) for all qMRI parameters in all muscles. The ICCs revealed excellent agreement between time points (FF = 0.980, water T2 = 0.941, FA = 0.952, MD = 0.948). Random measurement errors assessed by SEM and the MDC were low (< 12%). In conclusion, in this study, we showed that qMRI parameters in healthy volunteers living normal lives are stable over 18 months, thereby defining a benchmark for the expected range of variation over time.

5.
NMR Biomed ; : e5172, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38794994

ABSTRACT

Limb-girdle muscular dystrophy (LGMD) type R1 (LGMDR1) is the most common subtype of LGMD in Europe. Prospective longitudinal data, including clinical assessments and new biomarkers such as quantitative magnetic resonance imaging (qMRI), are needed to evaluate the natural course of the disease and therapeutic options. We evaluated eight thigh and seven leg muscles of 13 LGMDR1 patients (seven females, mean age 36.7 years, body mass index 23.9 kg/m2) and 13 healthy age- and gender-matched controls in a prospective longitudinal design over 1 year. Clinical assessment included testing for muscle strength with quick motor function measure (QMFM), gait analysis and patient questionnaires (neuromuscular symptom score, activity limitation [ACTIVLIM]). MRI scans were performed on a 3-T MRI scanner, including a Dixon-based sequence, T2 mapping and diffusion tensor imaging. The qMRI values of fat fraction (FF), water T2 relaxation time (T2), fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity were analysed. Within the clinical outcome measures, significant deterioration between baseline and follow-up was found for ACTIVLIM (p = 0.029), QMFM (p = 0.012). Analysis of qMRI parameters of the patient group revealed differences between time points for both FF and T2 when analysing all muscles (FF: p < 0.001; T2: p = 0.016). The highest increase of fat replacement was found in muscles with an FF of between 10% and 50% at baseline. T2 in muscles with low-fat replacement increased significantly. No significant differences were found for the diffusion metrics. Significant correlations between qMRI metrics and clinical assessments were found at baseline and follow-up, while only T2 changes in thigh muscles correlated with changes in ACTIVLIM over time (ρ = -0.621, p < 0.05). Clinical assessments can show deterioration of the general condition of LGMDR1 patients. qMRI measures can give additional information about underlying pathophysiology. Further research is needed to establish qMRI outcome measures for clinical trials.

6.
Int J Hyperthermia ; 41(1): 2321980, 2024.
Article in English | MEDLINE | ID: mdl-38616245

ABSTRACT

BACKGROUND: A method for periprocedural contrast agent-free visualization of uterine fibroid perfusion could potentially shorten magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) treatment times and improve outcomes. Our goal was to test feasibility of perfusion fraction mapping by intravoxel incoherent motion (IVIM) modeling using diffusion-weighted MRI as method for visual evaluation of MR-HIFU treatment progression. METHODS: Conventional and T2-corrected IVIM-derived perfusion fraction maps were retrospectively calculated by applying two fitting methods to diffusion-weighted MRI data (b = 0, 50, 100, 200, 400, 600 and 800 s/mm2 at 1.5 T) from forty-four premenopausal women who underwent MR-HIFU ablation treatment of uterine fibroids. Contrast in perfusion fraction maps between areas with low perfusion fraction and surrounding tissue in the target uterine fibroid immediately following MR-HIFU treatment was evaluated. Additionally, the Dice similarity coefficient (DSC) was calculated between delineated areas with low IVIM-derived perfusion fraction and hypoperfusion based on CE-T1w. RESULTS: Average perfusion fraction ranged between 0.068 and 0.083 in areas with low perfusion fraction based on visual assessment, and between 0.256 and 0.335 in surrounding tissues (all p < 0.001). DSCs ranged from 0.714 to 0.734 between areas with low perfusion fraction and the CE-T1w derived non-perfused areas, with excellent intraobserver reliability of the delineated areas (ICC 0.97). CONCLUSION: The MR-HIFU treatment effect in uterine fibroids can be visualized using IVIM perfusion fraction mapping, in moderate concordance with contrast enhanced MRI. IVIM perfusion fraction mapping has therefore the potential to serve as a contrast agent-free imaging method to visualize the MR-HIFU treatment progression in uterine fibroids.


Subject(s)
Leiomyoma , Magnetic Resonance Imaging , Female , Humans , Reproducibility of Results , Retrospective Studies , Perfusion , Leiomyoma/diagnostic imaging , Leiomyoma/surgery
7.
J Clin Med ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38610723

ABSTRACT

Background: Quantitative muscle MRI (qMRI) is a promising tool for evaluating and monitoring neuromuscular disorders (NMD). However, the application of different imaging protocols and processing pipelines restricts comparison between patient cohorts and disorders. In this qMRI study, we aim to compare dystrophic (limb-girdle muscular dystrophy), inflammatory (inclusion body myositis), and metabolic myopathy (Pompe disease) as well as patients with post-COVID-19 conditions suffering from myalgia to healthy controls. Methods: Ten subjects of each group underwent a 3T lower extremity muscle MRI, including a multi-echo, gradient-echo, Dixon-based sequence, a multi-echo, spin-echo (MESE) T2 mapping sequence, and a spin-echo EPI diffusion-weighted sequence. Furthermore, the following clinical assessments were performed: Quick Motor Function Measure, patient questionnaires for daily life activities, and 6-min walking distance. Results: Different involvement patterns of conspicuous qMRI parameters for different NMDs were observed. qMRI metrics correlated significantly with clinical assessments. Conclusions: qMRI metrics are suitable for evaluating patients with NMD since they show differences in muscular involvement in different NMDs and correlate with clinical assessments. Still, standardisation of acquisition and processing is needed for broad clinical use.

8.
J Magn Reson Imaging ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485455

ABSTRACT

BACKGROUND: Non-invasive evaluation of phosphomonoesters (PMEs) and phosphodiesters (PDEs) by 31-phosphorus MR spectroscopy (31 P MRS) may have potential for early therapy (non-)response assessment in cancer. However, 31 P MRS has not yet been applied to investigate the human pancreas in vivo. PURPOSE: To assess the technical feasibility and repeatability of 31 P MR spectroscopic imaging (MRSI) of the pancreas, compare 31 P metabolite levels between pancreas and liver, and determine the feasibility of 31 P MRSI in pancreatic cancer. STUDY TYPE: Prospective cohort study. POPULATION: 10 healthy subjects (age 34 ± 12 years, four females) and one patient (73-year-old female) with pancreatic ductal adenocarcinoma. FIELD STRENGTH/SEQUENCE: 7-T, 31 P FID-MRSI, 1 H gradient-echo MRI. ASSESSMENT: 31 P FID-MRSI of the abdomen (including the pancreas and liver) was performed with a nominal voxel size of 20 mm (isotropic). For repeatability measurements, healthy subjects were scanned twice on the same day. The patient was only scanned once. Test-retest 31 P MRSI data of pancreas and liver voxels (segmented on 1 H MRI) of healthy subjects were quantified by fitting in the time domain and signal amplitudes were normalized to γ-adenosine triphosphate. In addition, the PME/PDE ratio was calculated. Metabolite levels were averaged over all voxels within the pancreas, right liver lobe and left liver lobe, respectively. STATISTICAL TESTS: Repeatability of test-retest data from healthy pancreas was assessed by paired t-tests, Bland-Altman analyses, and calculation of the intrasubject coefficients of variation (CoVs). Significant differences between healthy pancreas and right and left liver lobes were assessed with a two-way analysis of variance (ANOVA) for repeated measures. A P-value <0.05 was considered statistically significant. RESULTS: The intrasubject CoVs for PME, PDE, and PME/PDE in healthy pancreas were below 20%. Furthermore, PME and PME/PDE were significantly higher in pancreas compared to liver. In the patient with pancreatic cancer, qualitatively, elevated relative PME signals were observed in comparison with healthy pancreas. DATA CONCLUSION: In vivo 31 P MRSI of the human healthy pancreas and in pancreatic cancer may be feasible at 7 T. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

9.
BMJ Open Sport Exerc Med ; 10(1): e001778, 2024.
Article in English | MEDLINE | ID: mdl-38347856

ABSTRACT

Objectives: To investigate the association between leisure time physical activity (LTPA) and MRI-based diastolic function and the mediating role of metabolic health. Methods: This cross-sectional analysis comprised 901 participants (46% women, mean age (SD): 56 (6) years (The Netherlands, 2008-2012)). LTPA was assessed via questionnaire, quantified in metabolic equivalent of tasks (METs)-minutes per week and participants underwent abdominal and cardiovascular MRI. Confirmatory factor analysis was used to construct the metabolic load factor. Piecewise structural equation model with adjustments for confounders was used to determine associations between LTPA and diastolic function and the mediating effect of metabolic load. Results: Significant differences in mitral early/late peak filling rate (E/A) ratio per SD of LTPA (men=1999, women=1870 MET-min/week) of 0.18, (95% CI= 0.03 to 0.33, p=0.021) were observed in men, but not in women: -0.01 (-0.01 to 0.34, p=0.058). Difference in deceleration time of mitral early filling (E-DT) was 0.13 (0.01 to 0.24, p=0.030) in men and 0.17 (0.05 to 0.28, p=0.005) in women. Metabolic load, including MRI-based visceral and subcutaneous adipose tissue, fasting glucose, high-density lipoprotein cholesterol and triglycerides, mediated these associations as follows: E/A-ratio of 0.030 (0.000 to 0.067, 19% mediated, p=0.047) in men but not in women: 0.058 (0.027 to 0.089, p<0.001) and E-DT not in men 0.004 (-0.012 to 0.021, p=0.602) but did in women 0.044 (0.013 to 0.057, 27% mediated, p=0.006). Conclusions: A larger amount of LTPA was associated with improved diastolic function where confirmatory factor analysis-based metabolic load partly mediated this effect. Future studies should assess whether improving indicators of metabolic load alongside LTPA will benefit healthy diastolic function even more.

10.
Cardiology ; 149(3): 255-263, 2024.
Article in English | MEDLINE | ID: mdl-38325343

ABSTRACT

INTRODUCTION: The optimal pre-participation screening strategy to identify athletes at risk for exercise-induced cardiovascular events is unknown. We therefore aimed to compare the American College of Sports Medicine (ACSM) and European Society of Cardiology (ESC) pre-participation screening strategies against extensive cardiovascular evaluations in identifying high-risk individuals among 35-50-year-old apparently healthy men. METHODS: We applied ACSM and ESC pre-participation screenings to 25 men participating in a study on first-time marathon running. We compared screening outcomes against medical history, physical examination, electrocardiography, blood tests, echocardiography, cardiopulmonary exercise testing, and magnetic resonance imaging. RESULTS: ACSM screening classified all participants as "medical clearance not necessary." ESC screening classified two participants as "high-risk." Extensive cardiovascular evaluations revealed ≥1 minor abnormality and/or cardiovascular condition in 17 participants, including three subjects with mitral regurgitation and one with a small atrial septal defect. Eleven participants had dyslipidaemia, six had hypertension, and two had premature atherosclerosis. Ultimately, three (12%) subjects had a serious cardiovascular condition warranting sports restrictions: aortic aneurysm, hypertrophic cardiomyopathy (HCM), and myocardial fibrosis post-myocarditis. Of these three participants, only one had been identified as "high-risk" by the ESC screening (for dyslipidaemia, not HCM) and none by the ACSM screening. CONCLUSION: Numerous occult cardiovascular conditions are missed when applying current ACSM/ESC screening strategies to apparently healthy middle-aged men engaging in their first high-intensity endurance sports event.


Subject(s)
Cardiovascular Diseases , Marathon Running , Humans , Male , Middle Aged , Adult , Cardiovascular Diseases/diagnosis , Exercise Test , Electrocardiography , Echocardiography , Mass Screening/methods , Physical Examination , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/diagnostic imaging , Magnetic Resonance Imaging , Hypertension/diagnosis , Dyslipidemias/diagnosis , Missed Diagnosis
11.
NMR Biomed ; 37(2): e5050, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37857335

ABSTRACT

Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) is a multiparametric quantitative MR framework, which allows for simultaneously acquiring quantitative tissue parameters such as T1, T2, and proton density from one single short scan. A typical two-dimensional (2D) MR-STAT acquisition uses a gradient-spoiled, gradient-echo sequence with a slowly varying RF flip-angle train and Cartesian readouts, and the quantitative tissue maps are reconstructed by an iterative, model-based optimization algorithm. In this work, we design a three-dimensional (3D) MR-STAT framework based on previous 2D work, in order to achieve better image signal-to-noise ratio, higher though-plane resolution, and better tissue characterization. Specifically, we design a 7-min, high-resolution 3D MR-STAT sequence, and the corresponding two-step reconstruction algorithm for the large-scale dataset. To reduce the long acquisition time, Cartesian undersampling strategies such as SENSE are adopted in our transient-state quantitative framework. To reduce the computational burden, a data-splitting scheme is designed for decoupling the 3D reconstruction problem into independent 2D reconstructions. The proposed 3D framework is validated by numerical simulations, phantom experiments, and in vivo experiments. High-quality knee quantitative maps with 0.8 × 0.8 × 1.5 mm3 resolution and bilateral lower leg maps with 1.6 mm isotropic resolution can be acquired using the proposed 7-min acquisition sequence and the 3-min-per-slice decoupled reconstruction algorithm. The proposed 3D MR-STAT framework could have wide clinical applications in the future.


Subject(s)
Imaging, Three-Dimensional , Multiparametric Magnetic Resonance Imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Algorithms , Magnetic Resonance Spectroscopy , Phantoms, Imaging , Image Processing, Computer-Assisted/methods , Brain
12.
Front Cardiovasc Med ; 10: 1285206, 2023.
Article in English | MEDLINE | ID: mdl-38089763

ABSTRACT

Introduction: Current practice to obtain left ventricular (LV) native and post-contrast T1 and T2 comprises single-slice readouts with multiple breath-holds (BHs). We propose a multi-slice parallel-imaging approach with a 72-channel receive-array to reduce BHs and demonstrate this in healthy subjects and hypertrophic cardiomyopathy (HCM) patients. Methods: A T1/T2 phantom was scanned at 3 T using a 16-channel and a novel 72-channel coil to assess the impact of different coils and acceleration factors on relaxation times. 16-18 healthy participants (8 female, age 28.4 ± 5.1 years) and 3 HCM patients (3 male, age 55.3 ± 4.2 years) underwent cardiac-MRI with the 72-channel coil, using a Modified Look-Locker scan with a shared inversion pulse across 3 slices and a Gradient-Spin-Echo scan. Acceleration was done by sensitivity encoding (SENSE) with accelerations 2, 4, and 6. LV T1 and T2 values were analyzed globally, per slice, and in 16 segments, with SENSE = 2 as the reference. Results: The phantom scans revealed no bias between coils and acceleration factors for T1 or T2, except for T2 with SENSE = 2, which resulted in a bias of 8.0 ± 6.7 ms (p < 0.001) between coils. SENSE = 4 and 6 enabled T1 mapping of three slices in a single BH, and T2 mapping of three slices within two BHs. In healthy subjects, T1 and T2 values varied. We found an average overestimation of T1 in 3 slices of 25 ± 87 ms for SENSE = 4 and 30 ± 103 ms using SENSE = 6, as compared to SENSE = 2. Acceleration resulted in decreased signal-to-noise; however, visually insignificant and without increased incidence of SENSE-artifacts. T2 was overestimated by 2.1 ± 5.0 ms for SENSE = 4 and 6.4 ± 9.7 ms using SENSE = 6, as compared to SENSE = 2. Native and post-contrast T1 measurements with SENSE = 4 and ECV quantification in HCM patients was successful. Conclusion: The 72-channel receiver-array coil with SENSE = 4 and 6, enabled LV-tissue characterization in three slices. Pre- and post-contrast T1 maps were obtained in a single BH, while T2 required two BHs.

13.
Sci Rep ; 13(1): 22822, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38129558

ABSTRACT

Quantitative muscle MRI is increasingly important in the non-invasive evaluation of neuromuscular disorders and their progression. Underlying histopathotological alterations, leading to changes in qMRI parameters are incompletely unraveled. Early microstructural differences of unknown origin reflected by Diffusion MRI in non-fat infiltrated muscles were detected in Pompe patients. This study employed a longitudinal approach with a Pompe disease mouse model to investigate the histopathological basis of these changes. Monthly scans of Pompe (Gaa6neo/6neo) and wildtype mice (age 1-8 months) were conducted using diffusion MRI, T2-mapping, and Dixon-based water-fat imaging on a 7 T scanner. Immunofluorescence studies on quadriceps muscles were analyzed for lysosomal accumulations and autophagic buildup and correlated with MRI outcome measures. Fat fraction and water-T2 did not differ between groups and remained stable over time. In Pompe mice, fractional anisotropy increased, while mean diffusivity (MD) and radial diffusivity (RD) decreased in all observed muscles. Autophagic marker and muscle fibre diameter revealed significant negative correlations with reduced RD and MD, while lysosomal marker did not show any change or correlation. Using qMRI, we showed diffusion changes in muscles of presymptomatic Pompe mice without fat-infiltrated muscles and correlated them to autophagic markers and fibre diameter, indicating diffusion MRI reveals autophagic buildup.


Subject(s)
Glycogen Storage Disease Type II , Humans , Mice , Animals , Infant , Glycogen Storage Disease Type II/diagnostic imaging , Glycogen Storage Disease Type II/pathology , Muscle Fibers, Skeletal/pathology , Diffusion Magnetic Resonance Imaging , Quadriceps Muscle , Disease Models, Animal , Water
14.
NMR Biomed ; 36(7): e4902, 2023 07.
Article in English | MEDLINE | ID: mdl-36630472

ABSTRACT

MRI examinations are accurate for diagnosing sports-related acute hamstring injuries. However, sensitive imaging methods for assessing recovery of these injuries are lacking. Diffusion tensor imaging (DTI) and quantitative T2 (qT2) mapping have both shown promise for assessing recovery of muscle micro trauma and exercise effects. The purpose of this study was to explore the potential of DTI and qT2 mapping for monitoring the muscle recovery processes after acute hamstring injury. In this prospective study, athletes with an acute hamstring injury underwent a 3-T MRI examination of the injured and contralateral hamstrings including DTI and qT2 measurements at three time points: (1) within 1 week after sustaining the injury, (2) 2 weeks after time point 1, and (3) return to play (RTP). A linear mixed model was used for time-effect analysis and paired t-tests for the detection of differences between injured and uninjured muscles. Forty-one athletes (age 27.8 ± 7 years; two females and 39 males) were included. Mean RTP time was 50 (range 12-169) days. A significant time effect was found for mean diffusivity, radial diffusivity, and the second and third eigenvalues (p ≤ 0.001) in the injured muscles. Fractional anisotropy (p = 0.40), first eigenvalue (p = 0.02), and qT2 (p = 0.61) showed no significant time effect. All DTI indices, except for fractional anisotropy, were significantly elevated compared with control muscles right after the injury (p < 0.001). Values normalized during the recovery period, with no significant differences between control and injured muscles at RTP (p values ranged from 0.08 to 0.51). Mean qT2 relaxation times in injured muscles were not significantly elevated compared with control muscles at any time point (p > 0.04). In conclusion, DTI can be used to monitor recovery after an acute hamstring injury. Future work should explore the potential of DTI indices to predict RTP and recovery times in athletes after an acute strain injury.


Subject(s)
Diffusion Tensor Imaging , Hamstring Muscles , Male , Female , Humans , Young Adult , Adult , Diffusion Tensor Imaging/methods , Prospective Studies , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging , Hamstring Muscles/diagnostic imaging
15.
NMR Biomed ; 36(5): e4877, 2023 05.
Article in English | MEDLINE | ID: mdl-36400716

ABSTRACT

Quantitative three-dimensional (3D) imaging of phosphorus (31 P) metabolites is potentially a promising technique with which to assess the progression of liver disease and monitor therapy response. However, 31 P magnetic resonance spectroscopy has a low sensitivity and commonly used 31 P surface coils do not provide full coverage of the liver. This study aimed to overcome these limitations by using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T. Using this setup, we determined the repeatability of whole-liver 31 P magnetic resonance spectroscopic imaging (31 P MRSI) in healthy subjects and assessed the effects of principal component analysis (PCA)-based denoising on the repeatability parameters. In addition, spatial variations of 31 P metabolites within the liver were analyzed. 3D 31 P MRSI data of the liver were acquired with a nominal voxel size of 20 mm isotropic in 10 healthy volunteers twice on the same day. Data were reconstructed without denoising, and with PCA-based denoising before or after channel combination. From the test-retest data, repeatability parameters for metabolite level quantification were determined for 12 31 P metabolite signals. On average, 31 P MR spectra from 100 ± 25 voxels in the liver were analyzed. Only voxels with contamination from skeletal muscle or the gall bladder were excluded and no voxels were discarded based on (low) signal-to-noise ratio (SNR). Repeatability for most quantified 31 P metabolite levels in the liver was good to excellent, with an intrasubject variability below 10%. PCA-based denoising increased the SNR ~ 3-fold, but did not improve the repeatability for mean liver 31 P metabolite quantification with the fitting constraints used. Significant spatial heterogeneity of various 31 P metabolite levels within the liver was observed, with marked differences for the phosphomonoester and phosphodiester metabolites between the left and right lobe. In conclusion, using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T allowed 31 P MRSI acquisitions with full liver coverage and good to excellent repeatability.


Subject(s)
Magnetic Resonance Imaging , Phosphorus , Humans , Phosphorus/metabolism , Principal Component Analysis , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Liver/metabolism , Signal-To-Noise Ratio
16.
Scand J Med Sci Sports ; 33(4): 393-406, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36514886

ABSTRACT

OBJECTIVES: To evaluate the effect of a Nordic hamstring exercise or Diver hamstring exercise intervention on biceps femoris long head, semitendinosus and semimembranosus muscle's fascicle length and orientation through diffusion tensor imaging (DTI) with magnetic resonance imaging. METHODS: In this three-arm, single-center, randomized controlled trial, injury-free male basketball players were randomly assigned to a Nordic, Diver hamstring exercise intervention or control group. The primary outcome was the DTI-derived fascicle length and orientation of muscles over 12 weeks. RESULTS: Fifty-three participants were included for analysis (mean age 22 ± 7 years). Fascicle length in the semitendinosus over 12 weeks significantly increased in the Nordic-group (mean [M]: 20.8 mm, 95% confidence interval [95% CI]: 7.8 to 33.8) compared with the Control-group (M: 0.9 mm, 95% CI: -7.1 to 8.9), mean between-groups difference: 19.9 mm, 95% CI: 1.9 to 37.9, p = 0.026. Fascicle orientation in the biceps femoris long head over 12 weeks significantly decreased in the Diver-group (mean: -2.6°, 95% CI: -4.1 to -1.0) compared with the Control-group (mean: -0.2°, 95% CI: -1.4 to 1.0), mean between-groups difference: -2.4°, 95% CI: -4.7 to -0.1, p = 0.039. CONCLUSION: The Nordic hamstring exercise intervention did significantly increase the fascicle length of the semitendinosus and the Diver hamstring exercise intervention did significantly change the orientation of fascicles of the biceps femoris long head. As both exercises are complementary to each other, the combination is relevant for preventing hamstring injuries.


Subject(s)
Diffusion Tensor Imaging , Hamstring Muscles , Humans , Male , Adolescent , Young Adult , Adult , Muscle Strength/physiology , Hamstring Muscles/physiology , Exercise/physiology , Exercise Therapy
17.
Eur Radiol ; 33(6): 4178-4188, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36472702

ABSTRACT

OBJECTIVES: No method is available to determine the non-perfused volume (NPV) repeatedly during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablations of uterine fibroids, as repeated acquisition of contrast-enhanced T1-weighted (CE-T1w) scans is inhibited by safety concerns. The objective of this study was to develop and test a deep learning-based method for translation of diffusion-weighted imaging (DWI) into synthetic CE-T1w scans, for monitoring MR-HIFU treatment progression. METHODS: The algorithm was retrospectively trained and validated on data from 33 and 20 patients respectively who underwent an MR-HIFU treatment of uterine fibroids between June 2017 and January 2019. Postablation synthetic CE-T1w images were generated by a deep learning network trained on paired DWI and reference CE-T1w scans acquired during the treatment procedure. Quantitative analysis included calculation of the Dice coefficient of NPVs delineated on synthetic and reference CE-T1w scans. Four MR-HIFU radiologists assessed the outcome of MR-HIFU treatments and NPV ratio based on the synthetic and reference CE-T1w scans. RESULTS: Dice coefficient of NPVs was 71% (± 22%). The mean difference in NPV ratio was 1.4% (± 22%) and not statistically significant (p = 0.79). Absolute agreement of the radiologists on technical treatment success on synthetic and reference CE-T1w scans was 83%. NPV ratio estimations on synthetic and reference CE-T1w scans were not significantly different (p = 0.27). CONCLUSIONS: Deep learning-based synthetic CE-T1w scans derived from intraprocedural DWI allow gadolinium-free visualization of the predicted NPV, and can potentially be used for repeated gadolinium-free monitoring of treatment progression during MR-HIFU therapy for uterine fibroids. KEY POINTS: • Synthetic CE-T1w scans can be derived from diffusion-weighted imaging using deep learning. • Synthetic CE-T1w scans may be used for visualization of the NPV without using a contrast agent directly after MR-HIFU ablations of uterine fibroids.


Subject(s)
Deep Learning , High-Intensity Focused Ultrasound Ablation , Leiomyoma , Uterine Neoplasms , Female , Humans , Uterine Neoplasms/diagnostic imaging , Uterine Neoplasms/surgery , Retrospective Studies , Leiomyoma/diagnostic imaging , Leiomyoma/surgery , Magnetic Resonance Imaging/methods , High-Intensity Focused Ultrasound Ablation/methods , Treatment Outcome
18.
Eur Radiol Exp ; 6(1): 54, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36316525

ABSTRACT

BACKGROUND: A new 72-channel receive array coil and sensitivity encoding, compressed (C-SENSE) and noncompressed (SENSE), were investigated to decrease the number of breath-holds (BHs) for cardiac magnetic resonance (CMR). METHODS: Three-T CMRs were performed using the 72-channel coil with SENSE-2/4/6 and C-SENSE-2/4/6 accelerated short-axis cine two-dimensional balanced steady-state free precession sequences. A 16-channel coil with SENSE-2 served as reference. Ten healthy subjects were included. BH-time was kept under 15 s. Data were compared in terms of image quality, biventricular function, number of BHs, and scan times. RESULTS: BHs decreased from 7 with C-SENSE-2 (scan time 70 s, 2 slices/BH) to 3 with C-SENSE-4 (scan time 42 s, 4-5 slices/BH) and 2 with C-SENSE-6 (scan time 28 s, 7 slices/BH). Compared to reference, image sharpness was similar for SENSE-2/4/6, slightly inferior for C-SENSE-2/4/6. Blood-to-myocardium contrast was unaffected. C-SENSE-4/6 was given lower qualitative median scores, but images were considered diagnostically adequate to excellent, with C-SENSE-6 suboptimal. Biventricular end-diastolic (EDV), end-systolic (ESV) and stroke volumes, ejection fractions (EF), cardiac outputs, and left ventricle (LV)-mass were similar for SENSE-2/4/6 with no systematic bias and clinically appropriate limits of agreements. C-SENSE slightly underestimated LV-EDV (-6.38 ± 6.0 mL, p < 0.047), LV-ESV (-7.94 ± 6.0 mL, p < 0.030) and overestimated LV-EF (3.16 ± 3.10%; p < 0.047) with C-SENSE-4. Bland-Altman analyses revealed minor systematic biases in these variables with C-SENSE-2/4/6 and for LV-mass with C-SENSE-6. CONCLUSIONS: Using the 72-channel coil, short-axis CMR for quantifying biventricular function was feasible in two BHs where SENSE slightly outperformed C-SENSE.


Subject(s)
Breath Holding , Magnetic Resonance Imaging, Cine , Humans , Magnetic Resonance Imaging, Cine/methods , Heart Ventricles , Reproducibility of Results , Ventricular Function, Left
19.
Sci Rep ; 12(1): 19676, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385624

ABSTRACT

To evaluate differences in qMRI parameters of muscle diffusion tensor imaging (mDTI), fat-fraction (FF) and water T2 time in leg muscles of calpainopathy patients (LGMD R1/D4) compared to healthy controls, to correlate those findings to clinical parameters and to evaluate if qMRI parameters show muscle degeneration in not-yet fatty infiltrated muscles. We evaluated eight thigh and seven calf muscles of 19 calpainopathy patients and 19 healthy matched controls. MRI scans were performed on a 3T MRI including a mDTI, T2 mapping and mDixonquant sequence. Clinical assessment was done with manual muscle testing, patient questionnaires (ACTIVLIM, NSS) as well as gait analysis. Average FF was significantly different in all muscles compared to controls (p < 0.001). In muscles with less than 8% FF a significant increase of FA (p < 0.005) and decrease of RD (p < 0.004) was found in high-risk muscles of calpainopathy patients. Water T2 times were increased within the low- and intermediate-risk muscles (p ≤ 0.045) but not in high-risk muscles (p = 0.062). Clinical assessments correlated significantly with qMRI values: QMFM vs. FF: r = - 0.881, p < 0.001; QMFM versus FA: r = - 0.747, p < 0.001; QMFM versus MD: r = 0.942, p < 0.001. A good correlation of FF and diffusion metrics to clinical assessments was found. Diffusion metrics and T2 values are promising candidates to serve as sensitive early and non-invasive methods to capture early muscle degeneration in non-fat-infiltrated muscles in calpainopathies.


Subject(s)
Diffusion Tensor Imaging , Magnetic Resonance Imaging , Humans , Diffusion Tensor Imaging/methods , Magnetic Resonance Imaging/methods , Muscle, Skeletal/diagnostic imaging , Water
20.
J Diabetes Complications ; 36(6): 108202, 2022 06.
Article in English | MEDLINE | ID: mdl-35491309

ABSTRACT

AIMS: To quantify metabolic impairment via a one-factor approach with confirmatory factor analysis (CFA) including MRI-derived visceral and subcutaneous adipose tissues and to associate it with diastolic dysfunction. METHODS: In this cross-sectional analysis, 916 participants (53% female, mean age (SD): 56 (6)) underwent abdominal and cardiovascular MRI. With CFA a metabolic-load factor of metabolic-syndrome variables and visceral and subcutaneous adipose tissues was constructed. A piecewise structural equation model approach with adjustment for confounding factors was used to determine associations with left-ventricular diastolic function, cardiac morphology and hemodynamics. RESULTS: Model fitting excluding blood pressure and waist circumference but including visceral and subcutaneous adipose tissues, fasting glucose, HDL-c and triglycerides was used to construct the metabolic-load factor. Evaluating measurement invariance demonstrated sex-specificity. Change in mitral early/late peak filling rate ratio was -0.12 for both males [-0.20; -0.05, p > 0.05] and females [-0.17; -0.07, p > 0.001] per SD of metabolic-load factor. Change in deceleration time of mitral early filling was -11.83 ms in females [-17.38; -6.27] per SD of metabolic-load factor. CONCLUSION: A single latent metabolic-load factor via CFA including MRI-derived adipose tissues increased sensitivity for metabolic impairment obsoleting waist circumference and is associated with a decreased left-ventricular diastolic function, more apparent in females than in males.


Subject(s)
Metabolic Syndrome , Obesity , Adipose Tissue/diagnostic imaging , Adipose Tissue/metabolism , Cross-Sectional Studies , Factor Analysis, Statistical , Female , Humans , Magnetic Resonance Imaging , Male , Metabolic Syndrome/complications , Metabolic Syndrome/diagnostic imaging , Obesity/complications
SELECTION OF CITATIONS
SEARCH DETAIL