Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 9(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36290464

ABSTRACT

Extracellular vesicles (EVs) are highly promising as drug delivery vehicles due to their nanoscale size, stability and biocompatibility. EVs possess natural targeting abilities and are known to traverse long distances to reach their target cells. This long-range organotropism and the ability to penetrate hard-to-reach tissues, including the brain, have sparked interest in using EVs for the targeted delivery of pharmaceuticals. In addition, EVs can be readily harvested from an individual's biofluids, making them especially suitable for personalized medicine applications. However, the targeting abilities of unmodified EVs have proven to be insufficient for clinical applications. Multiple attempts have been made to bioengineer EVs to fine-tune their on-target binding. Here, we summarize the current state of knowledge on the natural targeting abilities of native EVs. We also critically discuss the strategies to functionalize EV surfaces for superior long-distance targeting of specific tissues and cells. Finally, we review the challenges in achieving specific on-target binding of EV nanocarriers.

2.
Biomolecules ; 12(7)2022 06 24.
Article in English | MEDLINE | ID: mdl-35883439

ABSTRACT

Melatonin is a human neurotransmitter and plant signalling metabolite that perceives and directs plant metabolism. The mechanisms of melatonin action in plants remain undefined. We hypothesized that roots have a melatonin-specific receptor and/or transporter that can respond to melatonin-mediating pharmaceuticals. To test this hypothesis Arabidopsis seedlings were grown with melatonin pharmaceutical receptor agonists: ramelteon and tasimelteon, and/or antagonists: luzindole and 4-P-PDOT. Ramelteon was found both to mimic and competitively inhibit melatonin metabolism in plants. Due to the higher selectivity of ramelteon for the MT1 receptor type in humans, a sequence homology search for MT1 in Arabidopsis identified the rhomboid-like protein 7 (RBL7). In physiological studies, Arabidopsis rbl7 mutants were less responsive to ramelteon and melatonin. Quantum dot visualizations of the effects of ramelteon on melatonin binding to root cell membranes revealed a potential mechanism. We propose that RBL7 is a melatonin-interacting protein that directs root architecture and growth in a mechanism that is responsive to environmental factors.


Subject(s)
Arabidopsis , Melatonin , Animals , Arabidopsis/genetics , Arabidopsis/metabolism , Humans , Mammals/metabolism , Melatonin/pharmacology , Receptor, Melatonin, MT1/agonists , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/agonists , Receptor, Melatonin, MT2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...