Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 466: 133652, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309158

ABSTRACT

This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP) prevalent in Kuwait's coastal-industrial areas, on benthic foraminiferal communities. We conducted a mesocosm experiment in which we exposed benthic foraminiferal communities sampled from the coastal-industrial areas of Kuwait to a gradient of BDE-209 concentrations (0.01 to 20 mg/kg). The impact of exposure was assessed using live-staining and metabarcoding techniques. Despite the significantly different taxonomic compositions detected by the two techniques, our results show that BDE-209 significantly affects foraminiferal communities, with moderately high concentrations leading to reduced α-diversity and considerable taxonomic shifts in both molecular and morphological assemblages. At concentrations of 10 and 20 mg/kg, no living foraminifera were detected after 8 weeks, suggesting a threshold for their survival under BDE-209 exposure. The parallel responses of molecular and morphological communities confirm the reliability of both assessment methods. This study is the first to investigate the reaction of eukaryotic communities, specifically foraminifera, to POPs such as BDE-209, generating valuable insights that have the potential to enhance field studies and aid the refinement of sediment quality guidelines.


Subject(s)
Foraminifera , Geologic Sediments , Halogenated Diphenyl Ethers , Foraminifera/genetics , Biodiversity , Reproducibility of Results , Environmental Monitoring/methods
2.
Mar Environ Res ; 195: 106340, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232436

ABSTRACT

In recent years, the region surrounding Sepetiba Bay (SB; SE Brazil) has become a hub of intense urban expansion and economic exploitation in response to ore transport and industrial and port activities. As a result, contaminants have been introduced into the bay, leading to an overall worsening of the environmental quality. The present work applies for the first time a foraminiferal morphology-based approach (M) and eDNA-based metabarcoding sequencing (G), along with geochemical data to assess the ecological quality status (EcoQS) in the SB. Principal component analysis shows that the eDNA and morphospecies diversity as well as most of the taxa relative abundance decline in response to the environmental stress (ES) gradient related to total organic carbon (TOC) and metal pollution. Based on ecological indices, Exp(H'bc) (G), Exp(H'bc) (M), foraminifera ATZI marine biotic index (Foram-AMBI), Foram Stress Index (FSI), and geochemical indices (TOC and Potential Ecological Risk Index), the lowest values of EcoQS (i.e., bad to moderate) are inferred in the innermost part of the SB. Despite minor discrepancies among the six EcoQS indices, an agreement has been found for 63% of the stations. To improve the agreement between the ecological indices, it is necessary to fill the gap in species ecology; information on the ecology of many species is still unknown. This work reinforces the importance of molecular analysis and morphological methods in environmental impact studies and confirms the reliability of foraminiferal metabarcoding in EcoQS assessment. This is the first study evaluating the EcoQS in the South Atlantic by using combined foraminiferal eDNA metabarcoding with morphological data.


Subject(s)
Foraminifera , Foraminifera/genetics , Environmental Monitoring/methods , Brazil , Bays , Reproducibility of Results , Biodiversity , Geologic Sediments/chemistry
3.
Heliyon ; 10(1): e23281, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38205333

ABSTRACT

The lack of economic funds commonly represents a limiting factor in scientific research and prevents scientists from developing brilliant ideas. Indeed, a new project may involve using appropriate scientific instruments and concurrently dealing with the costs before pursuing new research fields. The innovative concept of investigating the effects of electric fields, as a simulation of marine electrical pollution, on benthic organisms such as foraminifera (marine protozoa) has been recently explored by our research group. This pioneering research has resulted in the development of a cost-effective instrument capable of generating customized electric stimulation patterns with accuracy and reliability. Here, we describe the construction of a low-intensity electrical stimulator based on an Arduino programmable board and a few electronic components. The instrument results very stable and precise regarding the stimulation times and the regulation of the current intensity applied to the biological preparation. Moreover, the setup can stimulate the preparation in constant or pulsed direct current. This homemade stimulation apparatus can be improved or modified according to the researchers' needs, as possibilities and fields of application can be innumerable.

4.
Mar Pollut Bull ; 199: 115941, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134870

ABSTRACT

Benthic foraminifera, single-celled marine organisms, are known for their wide distribution, high abundance and species diversity, test (i.e., shell) preservation in the sedimentary (e.g., historical) record, and sensitivity to environmental changes. Because of these characteristics, they have been widely used as bioindicators in environmental monitoring and, more recently, as Biological Quality Elements (BQEs) in the Ecological Quality Status (EcoQS) evaluation. The global scientific literature on benthic foraminifera as bioindicators was gathered from the Scopus database (overall 966 papers from 1973 to 2022) and explored with scientometric software. The outcomes highlight that the investigation of benthic foraminiferal response to pollutants started over 50 years ago. Indeed, not only the number of published documents has recently peaked (i.e., 2021 and 2022) but there has been also a growth in the percentages of papers falling within the Decision Sciences category that deals with the application of foraminiferal indices for the EcoQS assessment.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Environmental Biomarkers , Geologic Sediments , Water Pollutants, Chemical/analysis , Environmental Monitoring
5.
Sci Rep ; 13(1): 22051, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086887

ABSTRACT

The Turonian age (~ 90-94 Ma) was the hottest geological interval in the Cretaceous and also marked by the K3 event, a pronounced enrichment of 3He in pelagic sediments (i.e., massive input of extraterrestrial materials). Here, we present Os isotopic (187Os/188Os) and platinum group element (PGE) data from Turonian sedimentary records. After a sharp unradiogenic shift during the end-Cenomanian oceanic anoxic event 2, the 187Os/188Os ratios declined continuously throughout the Turonian, which could be ascribed to the formations of several large igneous provinces (LIPs). Because the interval with the most unradiogenic 187Os/188Os ratios (i.e., enhanced LIP volcanism) does not correspond to the warmest interval during the mid-Cretaceous, additional sources of CO2, such as subduction zone volcanism or the kimberlite formation, may explain the Cretaceous Thermal Maximum. As Os isotope ratios do not show any sharp unradiogenic shifts and PGE concentrations do not exhibit a pronounced enrichment, an influx of fine-grained cosmic dust to the Earth's surface, possibly from the long-period comet showers, can be inferred at the time of the 3He enrichment during the mid-Turonian K3 event. Our findings highlight the different behaviors of 3He and PGE information in the sedimentary rocks during the input of fined-grained extraterrestrial materials.

6.
Mar Pollut Bull ; 194(Pt A): 115225, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37531796

ABSTRACT

Brazilian coastal areas have been exposed to various anthropic influences including physical alteration such as marina construction. To assess the impact of the pier marina construction in the Saco da Ribeira cove (Flamengo Bay, SE Brazil), sedimentological (grain size), geochemical (organic and trace elements) parameters and benthic foraminifera were analyzed on a 50-cm-long dated sediment core covering the last century. The multiproxy approach applied to a numerical hydrodynamic model shows that the circulation in the study area underwent an overall reduction (ca. 30 %) after the pier marina construction in the 1970s, promoting an increase of mud accumulation and higher concentrations of total organic carbon and trace elements (i.e., Enrichment Factor Cu from 0.80 to 1.4) as well as a shift in the benthic foraminiferal assemblages (i.e., foraminiferal density from 63 to 23.20 specimens per 10 cm3 and dominance from 0.13 to 0.73). On the basis of these integrated data, better environmental conditions occurred before the 1970s, then an overall increase in environmental stress took place after the pier's marina construction. Our results provide a baseline for future biomonitoring projects in a stressed region and exemplify the strong capability and reliability of benthic foraminifera as bioindicators of paleoenvironmental changes in coastal environments and for understanding how human pressure might induce such changes.


Subject(s)
Foraminifera , Trace Elements , Humans , Environmental Monitoring/methods , Geologic Sediments , Brazil , Trace Elements/analysis , Bays , Reproducibility of Results
7.
Environ Pollut ; 330: 121538, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37011780

ABSTRACT

Titanium dioxide nanoparticles (NPs) have numerous applications, and their demands have increased as an alternative for banned sunscreen filters. However, the underlying mechanisms of their toxicity, remain largely unknown. Here, we investigate the mechanism of TiO2 NP cytotoxicity and detoxification through time-course experiments (1, 6, and 24 h) based on cellular observations and single-cell transcriptome analyses in a marine benthic foraminifer strain, derived from a common unicellular eukaryotic organism worldwide. After exposure for 1 h, cells enhanced the production of reactive oxygen species (ROS) in acidic endosomes containing TiO2 NPs as well as in mitochondria. In acidic endosomes, ROS were produced through the Fenton reaction on the surface of charged TiO2 NPs. In mitochondria, ROS were associated with porphyrin synthesis that chelated metal ions. Glutathione peroxide and neutral lipids acted as a sink for free radicals, whereas lipid peroxides were excreted to prevent further radical chain reactions. By 24 h, aggregated TiO2 NPs were encapsulated in organic compounds, possibly ceramide, and excreted as mucus, thereby preventing their further uptake. Thus, we reveal that foraminifers can tolerate the toxicity of TiO2 NPs and even prevent their further phagocytosis and uptake by trapping TiO2 NPs inside mucus. This previously unknown strategy could be applied in bioremediation to sequester NPs from the marine environment and can guide management of TiO2 pollution.


Subject(s)
Environmental Pollutants , Metal Nanoparticles , Nanoparticles , Reactive Oxygen Species , Nanoparticles/toxicity , Titanium/toxicity , Metal Nanoparticles/toxicity
8.
Life (Basel) ; 13(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37109392

ABSTRACT

Environmental disturbances resulting from anthropogenic energy pollution are intensely growing and represent a concern for the marine environment. Benthic organisms are the significant fauna exposed to this kind of pollution; among them, foraminifera are largely used as pollution bioindicators in marine environments, but studies on the effects induced by electrical stimulation are not documented. In the present research, we evaluated the effects of short-term different electric current densities on the viability of benthic foraminiferal species Amphistegina lessonii by checking the pseudopodial activity and defined the threshold electrical density range. After 3 days of treatment, A. lessonii stimulated with a constant current showed pseudopodial activity at a lower electric current density (0.29, 0.86 µA/cm2) up to 24 h. With increasing stimulation time, the percentages of pseudopodial activity decreased. The pseudopodial activity was absent at high current densities (5.71, 8.57 µA/cm2). The viability of A. lessonii exposed to a pulsed current was higher at a low and middle electric current density (from 0.29 to 5.71 µA/cm2) than at a high electric current density (from 11.43 to 20 µA/cm2). Based on these preliminary results, the selected benthic foraminiferal species seems to better stand pulsed currents than constant ones. These first experiments might provide useful information for the definition of the appropriate electrical density threshold to avoid side effects on a part of the benthic community.

9.
Environ Pollut ; 324: 121365, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36858101

ABSTRACT

Plastic has become one of the most ubiquitous and environmentally threatening sources of pollution in the Anthropocene. Beyond the conspicuous visual impact and physical damages, plastics both carry and release a cocktail of harmful chemicals, such as monomers, additives and persistent organic pollutants. Here we show through a review of the scientific literature dealing with both plastic pollution and benthic foraminifera (Rhizaria), that despite their critical roles in the structure and function of benthic ecosystems, only 0.4% of studies have investigated the effects of micro- and nano-plastics on this group. Consequently, we urge to consider benthic foraminifera in plastic pollution studies via a tentative roadmap that includes (i) the use of their biological, physiological and behavioral responses that may unveil the effects of microplastics and nanoplastics and (ii) the evaluation of the indicative value of foraminiferal species to serve as proxies for the degree of pollution. This appears particularly timely in the context of the development of management strategies to restore coastal ecosystems.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Plastics , Environmental Pollution , Water Pollutants, Chemical/analysis
10.
Environ Int ; 172: 107738, 2023 02.
Article in English | MEDLINE | ID: mdl-36641836

ABSTRACT

The Anthropocene is characterized by dramatic ecosystem changes driven by human activities. The impact of these activities can be assessed by different geochemical and paleontological proxies. However, each of these proxies provides only a fragmentary insight into the effects of anthropogenic impacts. It is highly challenging to reconstruct, with a holistic view, the state of the ecosystems from the preindustrial period to the present day, covering all biological components, from prokaryotes to multicellular eukaryotes. Here, we used sedimentary ancient DNA (sedaDNA) archives encompassing all trophic levels of biodiversity to reconstruct the two century-natural history in Bagnoli-Coroglio (Gulf of Pozzuoli, Tyrrhenian Sea), one of the most polluted marine-coastal sites in Europe. The site was characterized by seagrass meadows and high eukaryotic diversity until the beginning of the 20th century. Then, the ecosystem completely changed, with seagrasses and associated fauna as well as diverse groups of planktonic and benthic protists being replaced by low diversity biota dominated by dinophyceans and infaunal metazoan species. The sedaDNA analysis revealed a five-phase evolution of the area, where changes appear as the result of a multi-level cascade effect of impacts associated with industrial activities, urbanization, water circulation and land-use changes. The sedaDNA allowed to infer reference conditions that must be considered when restoration actions are to be implemented.


Subject(s)
Biodiversity , Ecosystem , Humans , Animals , Biota , Europe , Human Activities , Geologic Sediments
11.
Environ Pollut ; 320: 121003, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36623785

ABSTRACT

Using benthic foraminifera, we evaluate the ecological quality status (EcoQS) of transitional waters of the Guanabara Bay (SE Brazil) by applying the diversity-based index exp (H'bc) and the sensitivity-based Foram-AMBI for the first time in South America. The Guanabara Bay was selected for this study as it is one of the largest transitional ecosystems in the State of Rio de Janeiro and has been severely impacted by anthropogenic activities. Concentrations of potentially toxic elements (PTEs) were assessed by sequential chemical extraction in three phases (i.e., dissolved in water, adsorbed on organic matter, and Mn oxy-hydroxides). Total organic carbon, total nitrogen, and stable isotope (δ13C and δ15N) signatures of organic matter were analyzed to trace environmental stress. The Ammonia/Elphidium ratio suggests hypoxic conditions at most of the sampled sites. Principal component analysis identifies the first component as environmental stress underlying organic matter and PTE enrichment (in all three phases), which is positively related to Foram-AMBI and negatively to exp (H'bc). The exp (H'bc) and Foram-AMBI indices reveal that stations near the Governador Island and Niterói margin have the worst EcoQS, showing medium to extreme pollution. Additionally, Foram-AMBI and exp (H'bc) provide a congruent EcoQS classification for ∼64% of the sites. Although these results are promising, they suggest that a significant effort should be made to obtain better knowledge of foraminiferal ecological requirements to employ benthic foraminifera as a biomonitoring and management method.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Geologic Sediments/analysis , Ecosystem , Bays , Brazil , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
12.
Biology (Basel) ; 11(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-36101341

ABSTRACT

The evaluation of the effects of pollution (e.g., Hg pollution) is a difficult task and relies mostly on biomonitoring based on bioindicators. The application of biomarkers may represent a complementary or alternative approach in environmental biomonitoring. Mercury is known to pose a significant health hazard due to its ability to cross cellular membranes, bioaccumulate, and biomagnify. In the present research, the effects of short-term (i.e., 24 h) Hg exposure in the symbiont-bearing benthic foraminiferal species Amphistegina lessonii are evaluated using several biomarkers (i.e., proteins and enzymes). Mercury leads to significant changes in the biochemistry of cells. Its effects are mainly associated with oxidative stress (i.e., production of reactive oxygen species: ROS), depletion of glutathione (GSH), and alteration of protein synthesis. Specifically, our findings reveal that exposure to Hg leads to the consumption of GSH by GPx and GST for the scavenging of ROS and the activation of antioxidant-related enzymes, including SOD and GSH-enzymes (GST, GSR, GPx, and Se-GPx), that are directly related to a defense mechanism against ROS. The Hg exposure also activates the MAPK (e.g., p-p38) and HSP (e.g., HSP 70) pathways. The observed biochemical alterations associated with Hg exposure may represent effective and reliable proxies (i.e., biomarkers) for the evaluation of stress in A. lessonii and lead to a possible application for the detection of early warning signs of environmental stress in biomonitoring.

13.
Environ Sci Pollut Res Int ; 29(46): 69652-69679, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35576033

ABSTRACT

We analyze potential Late Holocene metal contamination along a sediment core collected in the distal zone of Ria de Vigo (North Spain). Statistical treatment of the dataset based on a multiproxy approach enabled us to identify and disentangle factors influencing the depositional processes and the preservation of the records of this activity in the area over the last ≈3000 years BP. Some layers of the analyzed core have significant enrichment in Cu and a moderate enrichment in Ag, Mo, As, Sb, S, Zn, Ni, Sn, Cd, Cr, Co, Pb, and Li. The enrichment of these elements in some layers of this core may be related to mining activities that have taken place since classical times in the region. Successive phases of pollution were identified along the core KSGX24 related to the Late Bronze Age (≈3000-2450 years BP), Iron Age (≈2450-1850 years BP), Roman times (≈1850-1550 years BP), Middle Ages (≈1250-500 years BP), and industrial and modern (≈250-0 years BP) anthropic activities. The protection of the Cies Islands, the erosive and transport capacity of the rivers in the region, oscillations of the oceanographic and climatic regime, atmospheric contamination, and diagenetic sedimentary processes might have contributed to the accumulation and preservation of this record in the distal region of the Ria de Vigo. The studied core shows that the industrial and preindustrial anthropic impacts caused an environmental liability and contributed to the presence of moderate to heavy pollution of various metals in surface and subsurface sediment layers in the distal sector of the Ria de Vigo, which could be a hazard to biota.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium , Environmental Monitoring , Geologic Sediments , Lead , Metals, Heavy/analysis , Rivers , Spain , Water Pollutants, Chemical/analysis
14.
Sci Total Environ ; 833: 155093, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35421459

ABSTRACT

The rapid urbanization and industrialization of Kuwait and the consequent effluent discharges into marine environments have resulted in a degradation of water and sediment quality in the coastal marine ecosystems such as in the Kuwait Bay. This study investigates the ecological response of benthic foraminifera (protists) to environmental stress in the Kuwait Bay. The traditional morphological approach was compared to the innovative environmental DNA (eDNA) metabarcoding to evaluate the ecological quality status (EcoQS). Forty-six surface sediment samples were collected from selected stations in the Kuwait Bay. To detect the pollution gradient, environmental parameters from water (e.g., salinity, pH, dissolved oxygen) and sediment (e.g., grain-size, trace metals, total organic carbon, total petroleum hydrocarbons) were measured at each station. Although the foraminiferal assemblages were different in the morphological and molecular datasets, the species turnover was congruent and statistically significant. Diversity-based biotic indices derived from both morphological and metabarcoding approaches, reflect the environmental stress gradient (i.e., organic and metal contaminations) in the Kuwait Bay. The lowest values of EcoQS (i.e., bad to poor) are found in the innermost part (i.e., Sulaibikhat Bay and Ras Kazmah), while higher EcoQS values occur in the outer part of the bay. This study constitutes the first attempt to apply the foraminiferal metabarcoding to assess the EcoQS within the Arabian Gulf and presents its advantages compared to the conventional morphological approach.


Subject(s)
Foraminifera , Bays , Ecosystem , Environmental Monitoring/methods , Geologic Sediments/chemistry , Kuwait , Water
15.
Chemosphere ; 298: 134239, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35292278

ABSTRACT

Environmental (e)DNA metabarcoding holds great promise for biomonitoring and ecotoxicological applications. However, few studies have compared the performance of eDNA versus eRNA metabarcoding in assessing organismal response to marine pollution, in experimental conditions. Here, we performed a chromium (Cr)-spiked mesocosm experimental test on benthic foraminiferal community to investigate the effects on species diversity by analysing both eDNA and eRNA metabarcoding data across different Cr concentrations in the sediment. Foraminiferal diversity in the eRNA data showed a significant negative correlation with the Cr concentration in the sediment, while a positive response was observed in the eDNA data. The foraminiferal OTUs exhibited a higher turnover rate in eRNA than in the eDNA-derived community. Furthermore, in the eRNA samples, OTUs abundance was significantly affected by the Cr gradient in the sediment (Pseudo-R2 = 0.28, p = 0.05), while no significant trend was observed in the eDNA samples. The correlation between Cr concentration and foraminiferal diversity in eRNA datasets was stronger when the less abundant OTUs (<100 reads) were removed and the analyses were conducted exclusively on OTUs shared between eRNA and eDNA datasets. This indicates the importance of metabarcoding data filtering to capture ecological impacts, in addition to using the putatively active organisms in the eRNA dataset. The comparative analyses on foraminiferal diversity revealed that eRNA-based metabarcoding can better assess the response to heavy metal exposure in presence of subtle concentrations of the pollutant. Furthermore, our results suggest that to unlock the full potential for ecosystem assessment, eDNA and eRNA should be studied in parallel to control for potential sequence artifacts in routine ecosystem surveys.


Subject(s)
Ecosystem , Foraminifera , Biodiversity , Chromium/toxicity , DNA Barcoding, Taxonomic/methods , Environmental Monitoring/methods , Foraminifera/genetics , RNA
16.
Mar Pollut Bull ; 177: 113485, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35278908

ABSTRACT

The Sepetiba Bay (SB; SE Brazil) has been severely affected by growing of urbanization and industrial activity. This work aims to analyze the evolution of contamination by metals of sediments in SB. The results show a marked increasing trend in the concentrations of potentially toxic elements (PTEs), which is consistent with the rapid populational and industrial growth, mostly since 1970 CE. The remobilization and redistribution of sediments by currents have contributed to the dispersion of metals from the main source of pollutants to relatively distant regions. "Moderately to strongly polluted" sediments are also recorded in some sites in deeper sedimentary layers (namely in preindustrial periods), probably due to lithologic sources of the sediments. The concentrations of PTEs in SB are relatively high when compared with those found globally and in other Brazilian water bodies. Samples of high-resolution sediment cores confirmed that potential ecological risk to the coastal system is influenced not only through human actions but also by natural causes.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Bays , Brazil , Environmental Monitoring/methods , Geologic Sediments , Humans , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
17.
Nat Commun ; 13(1): 239, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017487

ABSTRACT

During the mid-Cretaceous, the Earth experienced several environmental perturbations, including an extremely warm climate and Oceanic Anoxic Events (OAEs). Submarine volcanic episodes associated with formation of large igneous provinces (LIPs) may have triggered these perturbations. The osmium isotopic ratio (187Os/188Os) is a suitable proxy for tracing hydrothermal activity associated with the LIPs formation, but 187Os/188Os data from the mid-Cretaceous are limited to short time intervals. Here we provide a continuous high-resolution marine 187Os/188Os record covering all mid-Cretaceous OAEs. Several OAEs (OAE1a, Wezel and Fallot events, and OAE2) correspond to unradiogenic 187Os/188Os shifts, suggesting that they were triggered by massive submarine volcanic episodes. However, minor OAEs (OAE1c and OAE1d), which do not show pronounced unradiogenic 187Os/188Os shifts, were likely caused by enhanced monsoonal activity. Because the subaerial LIPs volcanic episodes and Circum-Pacific volcanism correspond to the highest temperature and pCO2 during the mid-Cretaceous, they may have caused the hot mid-Cretaceous climate.

18.
Mar Environ Res ; 172: 105502, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34638002

ABSTRACT

The main environmental variables controlling benthic foraminiferal distributions were identified and used to assess their influence on ecological indices developed as predictors of Ecological Quality Status (EcoQS) in marine ecosystems. Gradient forest and random forest models were applied to assess the predictive value of a selection of abiotic (environmental) and biotic (foraminifera) variables in a costal marine area in the central Adriatic Sea (Italy). This approach yields evidence that the predictor variables sand, silt, Pollution Load Index, and TN have the greatest influence on the distribution of benthic foraminifera in this area. In addition, we identify thresholds for the most important environmental variables that influence ecological indices. These findings contribute to efforts to determine how to best improve sediment quality and environmental stability for marine conservation. Further application of these approaches represents a useful tool for policymakers to survey the diversity of marine organisms and to improve the ability to protect and restore marine ecosystems by identifying predictors of diversity and identifying key thresholds in these predictors.


Subject(s)
Foraminifera , Biodiversity , Ecosystem , Environmental Monitoring , Geologic Sediments , Italy
19.
Life (Basel) ; 11(5)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063137

ABSTRACT

Proteins are essential to life, and the evaluation of their content, identification, and modification represents a fundamental assay in biochemistry research. Different analytical techniques and protocols have been specifically designed but have rarely been compared. Here, we test and compare a variety of methodologies and treatments for the quantification of proteins in Amphistegina lessonii, a larger symbiont-bearing benthic foraminiferal species. These analyses specifically include (a) lysis buffer (homemade vs. RIPA), (b) protein assays (Lowry, BCA, and Bradford), (c) ultrasonic bath treatment, and (d) protein staining (silver staining vs. Coomassie blue). On the basis of the comparative outcome, we suggest using the homemade lysis buffer, Lowry or BCA assays, ultrasonic bath treatment, and silver stain to maximize the extraction and characterization of protein for A. lessonii. This protocol might be suitable and extended to other benthic foraminiferal species, including the smaller ones.

20.
Saudi J Biol Sci ; 28(5): 2907-2913, 2021 May.
Article in English | MEDLINE | ID: mdl-34025168

ABSTRACT

In this study, we investigated the relationship between environmental parameters (water and sediment) and benthic foraminiferal assemblages found in nearshore siliciclastic sediment in the Arabian Gulf. Nearshore marine water and sediment samples were collected from a beach on the Gulf of Bahrain located south of Al Khobar, Saudi Arabia. The water samples were analyzed for biochemical oxygen demand (BOD5) and other chemical analyses. The sediment samples were tested for sediment oxygen demand (SOD) and heavy metal analysis. Results showed the BOD5 levels were below the detection limit (<1 ppm), while the mean SOD value was 0.97 ± 0.08 g/m2·day. The water and sediments were unpolluted and free of eutrophic enrichment, while the sediment was anoxic. The two most common genera in the benthic foraminiferal assemblage, Ammonia and Elphidium, are typical of shallow water sandy substrates. This is the first reported comparison between SOD and benthic foraminiferal assemblages.

SELECTION OF CITATIONS
SEARCH DETAIL
...