Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Cancers (Basel) ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38610979

ABSTRACT

Published models inconsistently associate glioblastoma size with overall survival (OS). This study aimed to investigate the prognostic effect of tumour size in a large cohort of patients diagnosed with GBM and interrogate how sample size and non-linear transformations may impact on the likelihood of finding a prognostic effect. In total, 279 patients with a IDH-wildtype unifocal WHO grade 4 GBM between 2014 and 2020 from a retrospective cohort were included. Uni-/multivariable association between core volume, whole volume (CV and WV), and diameter with OS was assessed with (1) Cox proportional hazard models +/- log transformation and (2) resampling with 1,000,000 repetitions and varying sample size to identify the percentage of models, which showed a significant effect of tumour size. Models adjusted for operation type and a diameter model adjusted for all clinical variables remained significant (p = 0.03). Multivariable resampling increased the significant effects (p < 0.05) of all size variables as sample size increased. Log transformation also had a large effect on the chances of a prognostic effect of WV. For models adjusted for operation type, 19.5% of WV vs. 26.3% log-WV (n = 50) and 69.9% WV and 89.9% log-WV (n = 279) were significant. In this large well-curated cohort, multivariable modelling and resampling suggest tumour volume is prognostic at larger sample sizes and with log transformation for WV.

2.
Cancers (Basel) ; 16(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38339229

ABSTRACT

PURPOSE: To evaluate the utility and comparative effectiveness of three five-point qualitative scoring systems for assessing response on PET-CT and MRI imaging individually and in combination, following curative-intent chemoradiotherapy (CRT) in locally advanced cervical cancer (LACC). Their performance in the prediction of subsequent patient outcomes was also assessed; Methods: Ninety-seven patients with histologically confirmed LACC treated with CRT using standard institutional protocols at a single centre who underwent PET-CT and MRI at staging and post treatment were identified retrospectively from an institutional database. The post-CRT imaging studies were independently reviewed, and response assessed using five-point scoring tools for T2WI, DWI, and FDG PET-CT. Patient characteristics, staging, treatment, and follow-up details including progression-free survival (PFS) and overall survival (OS) outcomes were collected. To compare diagnostic performance metrics, a two-proportion z-test was employed. A Kaplan-Meier analysis (Mantel-Cox log-rank) was performed. RESULTS: The T2WI (p < 0.00001, p < 0.00001) and DWI response scores (p < 0.00001, p = 0.0002) had higher specificity and accuracy than the PET-CT. The T2WI score had the highest positive predictive value (PPV), while the negative predictive value (NPV) was consistent across modalities. The combined MR scores maintained high NPV, PPV, specificity, and sensitivity, and the PET/MR consensus scores showed superior diagnostic accuracy and specificity compared to the PET-CT score alone (p = 0.02926, p = 0.0083). The Kaplan-Meier analysis revealed significant differences in the PFS based on the T2WI (p < 0.001), DWI (p < 0.001), combined MR (p = 0.003), and PET-CT/MR consensus scores (p < 0.001) and in the OS for the T2WI (p < 0.001), DWI (p < 0.001), and combined MR scores (p = 0.031) between responders and non-responders. CONCLUSION: Post-CRT response assessment using qualitative MR scoring and/or consensus PET-CT and MRI scoring was a better predictor of outcome compared to PET-CT assessment alone. This requires validation in a larger prospective study but offers the potential to help stratify patient follow-up in the future.

3.
Neuro Oncol ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38285679

ABSTRACT

BACKGROUND: The aim was to predict survival of glioblastoma at eight months after radiotherapy (a period allowing for completing a typical course of adjuvant temozolomide), by applying deep learning to the first brain MRI after radiotherapy completion. METHODS: Retrospective and prospective data were collected from 206 consecutive glioblastoma, IDH-wildtype patients diagnosed between March 2014-February 2022 across 11 UK centers. Models were trained on 158 retrospective patients from three centers. Holdout test sets were retrospective (n=19; internal validation), and prospective (n=29; external validation from eight distinct centers).Neural network branches for T2-weighted and contrast-enhanced T1-weighted inputs were concatenated to predict survival. A non-imaging branch (demographics/MGMT/treatment data) was also combined with the imaging model. We investigated the influence of individual MR sequences; non-imaging features; and weighted dense blocks pretrained for abnormality detection. RESULTS: The imaging model outperformed the non-imaging model in all test sets (area under the receiver-operating characteristic curve, AUC p=0.038) and performed similarly to a combined imaging/non-imaging model (p>0.05). Imaging, non-imaging, and combined models applied to amalgamated test sets gave AUCs of 0.93, 0.79, and 0.91. Initializing the imaging model with pretrained weights from 10,000s of brain MRIs improved performance considerably (amalgamated test sets without pretraining 0.64; p=0.003). CONCLUSIONS: A deep learning model using MRI images after radiotherapy, reliably and accurately determined survival of glioblastoma. The model serves as a prognostic biomarker identifying patients who will not survive beyond a typical course of adjuvant temozolomide, thereby stratifying patients into those who might require early second-line or clinical trial treatment.

4.
Eur Radiol ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37924344

ABSTRACT

OBJECTIVES: The incidence of anal squamous cell carcinoma (ASCC) is increasing worldwide, with a significant proportion of patients treated with curative intent having recurrence. The ability to accurately predict progression-free survival (PFS) and overall survival (OS) would allow for development of personalised treatment strategies. The aim of the study was to train and external test radiomic/clinical feature derived time-to-event prediction models. METHODS: Consecutive patients with ASCC treated with curative intent at two large tertiary referral centres with baseline FDG PET-CT were included. Radiomic feature extraction was performed using LIFEx software on the pre-treatment PET-CT. Two distinct predictive models for PFS and OS were trained and tuned at each of the centres, with the best performing models externally tested on the other centres' patient cohort. RESULTS: A total of 187 patients were included from centre 1 (mean age 61.6 ± 11.5 years, median follow up 30 months, PFS events = 57/187, OS events = 46/187) and 257 patients were included from centre 2 (mean age 62.6 ± 12.3 years, median follow up 35 months, PFS events = 70/257, OS events = 54/257). The best performing model for PFS and OS was achieved using a Cox regression model based on age and metabolic tumour volume (MTV) with a training c-index of 0.7 and an external testing c-index of 0.7 (standard error = 0.4). CONCLUSIONS: A combination of patient age and MTV has been demonstrated using external validation to have the potential to predict OS and PFS in ASCC patients. CLINICAL RELEVANCE STATEMENT: A Cox regression model using patients' age and metabolic tumour volume showed good predictive potential for progression-free survival in external testing. The benefits of a previous radiomics model published by our group could not be confirmed on external testing. KEY POINTS: • A predictive model based on patient age and metabolic tumour volume showed potential to predict overall survival and progression-free survival and was validated on an external test cohort. • The methodology used to create a predictive model from age and metabolic tumour volume was repeatable using external cohort data. • The predictive ability of positron emission tomography-computed tomography-derived radiomic features diminished when the influence of metabolic tumour volume was accounted for.

5.
Curr Oncol ; 30(7): 6682-6698, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37504350

ABSTRACT

Glioblastoma (GBM) has the typical radiological appearance (TRA) of a centrally necrotic, peripherally enhancing tumor with surrounding edema. The objective of this study was to determine whether the developing GBM displays a spectrum of imaging changes detectable on routine clinical imaging prior to TRA GBM. Patients with pre-operative imaging diagnosed with GBM (1 January 2014-31 March 2022) were identified from a neuroscience center. The imaging was reviewed by an experienced neuroradiologist. Imaging patterns preceding TRA GBM were analyzed. A total of 76 out of 555 (14%) patients had imaging preceding TRA GBM, 57 had solitary lesions, and 19 had multiple lesions (total = 84 lesions). Here, 83% of the lesions had cortical or cortical/subcortical locations. The earliest imaging features for 84 lesions were T2 hyperintensity/CT low density (n = 18), CT hyperdensity (n = 51), and T2 iso-intensity (n = 15). Lesions initially showing T2 hyperintensity/CT low density later showed T2 iso-intensity. When CT and MRI were available, all CT hyperdense lesions showed T2 iso-intensity, reduced diffusivity, and the following enhancement patterns: nodular 35%, solid 29%, none 26%, and patchy peripheral 10%. The mean time to develop TRA GBM from T2 hyperintensity was 140 days and from CT hyperdensity was 69 days. This research suggests that the developing GBM shows a spectrum of imaging features, progressing through T2 hyperintensity to CT hyperdensity, T2 iso-intensity, reduced diffusivity, and variable enhancement to TRA GBM. Red flags for non-TRA GBM lesions are cortical/subcortical CT hyperdense/T2 iso-intense/low ADC. Future research correlating this imaging spectrum with pathophysiology may provide insight into GBM growth patterns.


Subject(s)
Glioblastoma , Humans , Cross-Sectional Studies , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed
6.
Radiol Med ; 128(6): 765-774, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198374

ABSTRACT

PURPOSE: To develop a machine learning (ML) model based on radiomic features (RF) extracted from whole prostate gland magnetic resonance imaging (MRI) for prediction of tumour hypoxia pre-radiotherapy. MATERIAL AND METHODS: Consecutive patients with high-grade prostate cancer and pre-treatment MRI treated with radiotherapy between 01/12/2007 and 1/08/2013 at two cancer centres were included. Cancers were dichotomised as normoxic or hypoxic using a biopsy-based 32-gene hypoxia signature (Ragnum signature). Prostate segmentation was performed on axial T2-weighted (T2w) sequences using RayStation (v9.1). Histogram standardisation was applied prior to RF extraction. PyRadiomics (v3.0.1) was used to extract RFs for analysis. The cohort was split 80:20 into training and test sets. Six different ML classifiers for distinguishing hypoxia were trained and tuned using five different feature selection models and fivefold cross-validation with 20 repeats. The model with the highest mean validation area under the curve (AUC) receiver operating characteristic (ROC) curve was tested on the unseen set, and AUCs were compared via DeLong test with 95% confidence interval (CI). RESULTS: 195 patients were included with 97 (49.7%) having hypoxic tumours. The hypoxia prediction model with best performance was derived using ridge regression and had a test AUC of 0.69 (95% CI: 0.14). The test AUC for the clinical-only model was lower (0.57), but this was not statistically significant (p = 0.35). The five selected RFs included textural and wavelet-transformed features. CONCLUSION: Whole prostate MRI-radiomics has the potential to non-invasively predict tumour hypoxia prior to radiotherapy which may be helpful for individualised treatment optimisation.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Tumor Hypoxia , Retrospective Studies , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology
7.
Biomolecules ; 13(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36830712

ABSTRACT

The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A-RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C-Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience.


Subject(s)
Aortitis , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Radiopharmaceuticals , ROC Curve
8.
Cancers (Basel) ; 15(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36672413

ABSTRACT

BACKGROUND: Incomplete response on FDG PET-CT following (chemo)radiotherapy (CRT) for head and neck squamous cell carcinoma (HNSCC) hinders optimal management. The study assessed the utility of an interval (second look) PET-CT. METHODS: Patients with oropharyngeal squamous cell carcinoma cancer (OPSCC) treated with CRT at a single centre between 2013 and 2020 who underwent baseline, response, and second-look PET-CT were included. Endpoints were conversion rate to complete metabolic response (CMR) and test characteristics of second-look PET-CT. RESULTS: In total, 714 patients with OPSCC underwent PET-CT post-radiotherapy. In total, 88 patients with incomplete response underwent second-look PET-CT a median of 13 weeks (interquartile range 10-15 weeks) after the initial response assessment. In total, 27/88 (31%) second-look PET-CTs showed conversion to CMR, primary tumour CMR in 20/60 (30%), and nodal CMR in 13/37 (35%). In total, 1/34 (3%) with stable tumour/nodal uptake at the second-look PET-CT relapsed. Sensitivity, specificity, positive (PPV), and negative predictive value (NPV) of second-look PET-CT were 95%, 49%, 50%, and 95% for tumour and 92%, 50%, 50%, and 92% for nodes, respectively. Primary tumour progression following CMR occurred in one patient, two patients with residual nodal uptake at second-look PET-CT progressed locoregionally, and one patient developed metastatic disease following CMR in residual nodes. CONCLUSION: Most patients undergoing second-look PET-CT converted to CMR or demonstrated stable PET signal. NPV was high, suggesting the potential to avoid unnecessary surgical intervention.

10.
Nat Commun ; 13(1): 7346, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36470898

ABSTRACT

Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing.


Subject(s)
Big Data , Glioblastoma , Humans , Machine Learning , Rare Diseases , Information Dissemination
11.
Cancers (Basel) ; 14(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36230604

ABSTRACT

Background: Data on the accuracy of response assessment 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography-computed tomography (PET-CT) following (chemo)radiotherapy in patients with oropharynx squamous cell carcinoma (OPSCC) is predominantly based on HPV-positive disease. There is a paucity of data for HPV-negative disease, which has a less favourable prognosis. Methods: 96 patients treated with (chemo)radiotherapy for HPV-negative OPSCC with baseline and response assessment FDG PET-CT between 2013−2020, were analysed. PET-CT response was classified as negative, equivocal, or positive based on qualitative reporting. PET-CT response categories were analysed with reference to clinicopathological outcomes. Test characteristics were evaluated, comparing negative results to equivocal and positive results together. Post-test probabilities were calculated separately for positive and equivocal or negative results. Results: Median follow-up was 26 months. The negative predictive value of a negative scan was 93.7 and 93.2%, respectively, for primary tumour and nodal disease. For a negative scan, the post-test probability was 0.06 for primary and 0.07 for nodal disease. The post-test probability of an equivocal scan was 0.51 and 0.72 for primary and lymph node, respectively. The post-test probability of a positive scan approached 1. For patients with/without a negative scan, two-year overall survival and progression-free survival were 83% versus 30% and 79% versus 17% (p < 0.001), respectively. Conclusion: The NPV of a negative response assessment PET-CT in HPV-negative OPSCC is high, supporting a strategy of clinical monitoring. Contrasting with the published literature for HPV-positive OPSCC, an equivocal response scan was associated with a moderate rate of residual disease.

12.
Eur Radiol ; 32(10): 7237-7247, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36006428

ABSTRACT

OBJECTIVES: Relapse occurs in ~20% of patients with classical Hodgkin lymphoma (cHL) despite treatment adaption based on 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography response. The objective was to evaluate pre-treatment FDG PET/CT-derived machine learning (ML) models for predicting outcome in patients with cHL. METHODS: All cHL patients undergoing pre-treatment PET/CT at our institution between 2008 and 2018 were retrospectively identified. A 1.5 × mean liver standardised uptake value (SUV) and a fixed 4.0 SUV threshold were used to segment PET/CT data. Feature extraction was performed using PyRadiomics with ComBat harmonisation. Training (80%) and test (20%) cohorts stratified around 2-year event-free survival (EFS), age, sex, ethnicity and disease stage were defined. Seven ML models were trained and hyperparameters tuned using stratified 5-fold cross-validation. Area under the curve (AUC) from receiver operator characteristic analysis was used to assess performance. RESULTS: A total of 289 patients (153 males), median age 36 (range 16-88 years), were included. There was no significant difference between training (n = 231) and test cohorts (n = 58) (p value > 0.05). A ridge regression model using a 1.5 × mean liver SUV segmentation had the highest performance, with mean training, validation and test AUCs of 0.82 ± 0.002, 0.79 ± 0.01 and 0.81 ± 0.12. However, there was no significant difference between a logistic model derived from metabolic tumour volume and clinical features or the highest performing radiomic model. CONCLUSIONS: Outcome prediction using pre-treatment FDG PET/CT-derived ML models is feasible in cHL patients. Further work is needed to determine optimum predictive thresholds for clinical use. KEY POINTS: • A fixed threshold segmentation method led to more robust radiomic features. • A radiomic-based model for predicting 2-year event-free survival in classical Hodgkin lymphoma patients is feasible. • A predictive model based on ridge regression was the best performing model on our dataset.


Subject(s)
Hodgkin Disease , Positron Emission Tomography Computed Tomography , Adolescent , Adult , Aged , Aged, 80 and over , Fluorodeoxyglucose F18/metabolism , Hodgkin Disease/diagnostic imaging , Hodgkin Disease/therapy , Humans , Machine Learning , Male , Middle Aged , Neoplasm Recurrence, Local , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Retrospective Studies , Young Adult
13.
Cancers (Basel) ; 14(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35884545

ABSTRACT

Anti-1-amino-3-18fluorine-fluorocyclobutane-1-carboxylic acid (18F-fluciclovine) positron emission tomography (PET) shows preferential glioma uptake but there is little data on how uptake correlates with post-contrast T1-weighted (Gd-T1) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) activity during adjuvant treatment. This pilot study aimed to compare 18F-fluciclovine PET, DCE-MRI and Gd-T1 in patients undergoing chemoradiotherapy for glioblastoma (GBM), and in a parallel pre-clinical GBM model, to investigate correlation between 18F-fluciclovine uptake, MRI findings, and tumour biology. 18F-fluciclovine-PET-computed tomography (PET-CT) and MRI including DCE-MRI were acquired before, during and after adjuvant chemoradiotherapy (60 Gy in 30 fractions with temozolomide) in GBM patients. MRI volumes were manually contoured; PET volumes were defined using semi-automatic thresholding. The similarity of the PET and DCE-MRI volumes outside the Gd-T1 volume boundary was measured using the Dice similarity coefficient (DSC). CT-2A tumour-bearing mice underwent MRI and 18F-fluciclovine PET-CT. Post-mortem mice brains underwent immunohistochemistry staining for ASCT2 (amino acid transporter), nestin (stemness) and Ki-67 (proliferation) to assess for biologically active tumour. 6 patients were recruited (GBM 1-6) and grouped according to overall survival (OS)-short survival (GBM-SS, median OS 249 days) and long survival (GBM-LS, median 903 days). For GBM-SS, PET tumour volumes were greater than DCE-MRI, in turn greater than Gd-T1. For GBM-LS, Gd-T1 and DCE-MRI were greater than PET. Tumour-specific 18F-fluciclovine uptake on pre-clinical PET-CT corresponded to immunostaining for Ki-67, nestin and ASCT2. Results suggest volumes of 18F-fluciclovine-PET activity beyond that depicted by DCE-MRI and Gd-T1 are associated with poorer prognosis in patients undergoing chemoradiotherapy for GBM. The pre-clinical model confirmed 18F-fluciclovine uptake reflected biologically active tumour.

14.
Phys Imaging Radiat Oncol ; 22: 115-122, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35619643

ABSTRACT

Background and purpose: Magnetic Resonance Imaging (MRI) exhibits scanner dependent contrast, which limits generalisability of radiomics and machine-learning for radiation oncology. Current deep-learning harmonisation requires paired data, retraining for new scanners and often suffers from geometry-shift which alters anatomical information. The aim of this study was to investigate style-blind auto-encoders for MRI harmonisation to accommodate unpaired training data, avoid geometry-shift and harmonise data from previously unseen scanners. Materials and methods: A style-blind auto-encoder, using adversarial classification on the latent-space, was designed for MRI harmonisation. The public CC359 T1-w MRI brain dataset includes six scanners (three manufacturers, two field strengths), of which five were used for training. MRI from all six (including one unseen) scanner were harmonised to common contrast. Harmonisation extent was quantified via Kolmogorov-Smirnov testing of residual scanner dependence of 3D radiomic features, and compared to WhiteStripe normalisation. Anatomical content preservation was measured through change in structural similarity index on contrast-cycling (δSSIM). Results: The percentage of radiomics features showing statistically significant scanner-dependence was reduced from 41% (WhiteStripe) to 16% for white matter and from 39% to 27% for grey matter. δSSIM < 0.0025 on harmonisation and de-harmonisation indicated excellent anatomical content preservation. Conclusions: Our method harmonised MRI contrast effectively, preserved critical anatomical details at high fidelity, trained on unpaired data and allowed zero-shot harmonisation. Robust and clinically translatable harmonisation of MRI will enable generalisable radiomic and deep-learning models for a range of applications, including radiation oncology treatment stratification, planning and response monitoring.

15.
Cancers (Basel) ; 14(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35406482

ABSTRACT

BACKGROUND: Approximately 30% of patients with diffuse large B-cell lymphoma (DLBCL) will have recurrence. The aim of this study was to develop a radiomic based model derived from baseline PET/CT to predict 2-year event free survival (2-EFS). METHODS: Patients with DLBCL treated with R-CHOP chemotherapy undergoing pre-treatment PET/CT between January 2008 and January 2018 were included. The dataset was split into training and internal unseen test sets (ratio 80:20). A logistic regression model using metabolic tumour volume (MTV) and six different machine learning classifiers created from clinical and radiomic features derived from the baseline PET/CT were trained and tuned using four-fold cross validation. The model with the highest mean validation receiver operator characteristic (ROC) curve area under the curve (AUC) was tested on the unseen test set. RESULTS: 229 DLBCL patients met the inclusion criteria with 62 (27%) having 2-EFS events. The training cohort had 183 patients with 46 patients in the unseen test cohort. The model with the highest mean validation AUC combined clinical and radiomic features in a ridge regression model with a mean validation AUC of 0.75 ± 0.06 and a test AUC of 0.73. CONCLUSIONS: Radiomics based models demonstrate promise in predicting outcomes in DLBCL patients.

16.
J Nucl Cardiol ; 29(6): 3315-3331, 2022 12.
Article in English | MEDLINE | ID: mdl-35322380

ABSTRACT

BACKGROUND: The aim of this study was to explore the feasibility of assisted diagnosis of active (peri-)aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. METHODS: The aorta was manually segmented on FDG PET-CT in 50 patients with aortitis and 25 controls. Radiomic features (RF) (n = 107), including SUV (Standardized Uptake Value) metrics, were extracted from the segmented data and harmonized using the ComBat technique. Individual RFs and groups of RFs (i.e., signatures) were used as input in Machine Learning classifiers. The diagnostic utility of these classifiers was evaluated with area under the receiver operating characteristic curve (AUC) and accuracy using the clinical diagnosis as the ground truth. RESULTS: Several RFs had high accuracy, 84% to 86%, and AUC scores 0.83 to 0.97 when used individually. Radiomic signatures performed similarly, AUC 0.80 to 1.00. CONCLUSION: A methodological framework for a radiomic-based approach to support diagnosis of aortitis was outlined. Selected RFs, individually or in combination, showed similar performance to the current standard of qualitative assessment in terms of AUC for identifying active aortitis. This framework could support development of a clinical decision-making tool for a more objective and standardized assessment of aortitis.


Subject(s)
Aortitis , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Aortitis/diagnostic imaging , Radiopharmaceuticals , Artificial Intelligence , Retrospective Studies
17.
Pulm Ther ; 6(1): 107-117, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32185642

ABSTRACT

INTRODUCTION: Bronchial artery embolisation (BAE) is an established treatment method for massive haemoptysis. The aim of this study is to evaluate the impact of BAE on in-hospital outcomes and long-term survival in patients with massive haemoptysis. METHODS: Retrospective review of all cases of acute massive haemoptysis treated by BAE between April 2000 and April 2012 with at least a 5 year follow up of each patient. Targeted BAE was performed in cases with lateralising symptoms, bronchoscopic sites of bleeding or angiographic unilateral abnormal vasculature. In the absence of lateralising symptoms or signs, bilateral BAE was performed. RESULTS: 96 BAEs were performed in 68 patients. The majority (64 cases, 67%) underwent unilateral procedures. 83 (86.5%) procedures resulted in immediate/short term control of haemoptysis which lasted for longer than a month. The mean duration of haemoptysis free period after embolisation was 96 months. There were three major complications (cardio-pulmonary arrest, paraparesis and stroke). 38 (56%) patients were still alive at least 5 years following their BAE. Benign causes were associated with significantly longer haemoptysis free periods, mean survival 108 months compared to 32 months in patients with an underlying malignant cause (p = 0.005). An episode of haemoptysis within a month of the initial embolisation was associated reduced overall survival (p = 0.033). CONCLUSION: BAE is effective in controlling massive haemoptysis. Long-term survival depends on the underlying pulmonary pathology. Strategies are required to avoid incomplete initial embolisation, which is associated with ongoing haemoptysis and high mortality despite further BAE.

18.
Br J Radiol ; 92(1094): 20180584, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30383441

ABSTRACT

Accurate staging and response assessment is vital in the management of childhood malignancies. Fluorine-18 fluorodeoxyglucose positron emission tomography/CT (FDG PET-CT) provides complimentary anatomical and functional information. Oncological applications of FDG PET-CT are not as well-established within the paediatric population compared to adults. This article will comprehensively review established oncological PET-CT applications in paediatric oncology and provide an overview of emerging and future developments in this domain.


Subject(s)
Neoplasms/diagnostic imaging , Positron Emission Tomography Computed Tomography , Adolescent , Child , Fluorodeoxyglucose F18 , Humans , Medical Oncology , Neoplasm Staging/methods , Pediatrics , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals
19.
Eur Radiol ; 28(12): 5010-5018, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29872911

ABSTRACT

OBJECTIVE: To explore the utility of MR texture analysis (MRTA) for detection of nodal extracapsular spread (ECS) in oral cavity squamous cell carcinoma (SCC). METHODS: 115 patients with oral cavity SCC treated with surgery and adjuvant (chemo)radiotherapy were identified retrospectively. First-order texture parameters (entropy, skewness and kurtosis) were extracted from tumour and nodal regions of interest (ROIs) using proprietary software (TexRAD). Nodal MR features associated with ECS (flare sign, irregular capsular contour; local infiltration; nodal necrosis) were reviewed and agreed in consensus by two experienced radiologists. Diagnostic performance characteristics of MR features of ECS were compared with primary tumour and nodal MRTA prediction using histology as the gold standard. Receiver operating characteristic (ROC) and regression analyses were also performed. RESULTS: Nodal entropy derived from contrast-enhanced T1-weighted images was significant in predicting ECS (p = 0.018). MR features had varying accuracy: flare sign (70%); irregular contour (71%); local infiltration (66%); and nodal necrosis (64%). Nodal entropy combined with irregular contour was the best predictor of ECS (p = 0.004, accuracy 79%). CONCLUSION: First-order nodal MRTA combined with imaging features may improve ECS prediction in oral cavity SCC. KEY POINTS: • Nodal MR textural analysis can aid in predicting extracapsular spread (ECS). • Medium filter contrast-enhanced T1 nodal entropy was strongly significant in predicting ECS. • Combining nodal entropy with irregular nodal contour improves predictive accuracy.


Subject(s)
Carcinoma, Squamous Cell/secondary , Lymph Nodes/pathology , Magnetic Resonance Imaging/methods , Mouth Neoplasms/pathology , Neoplasm Staging , Adult , Aged , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/therapy , Combined Modality Therapy , Female , Humans , Lymphatic Metastasis , Male , Middle Aged , Mouth Neoplasms/therapy , Predictive Value of Tests , ROC Curve , Retrospective Studies
20.
Br J Radiol ; 91(1086): 20170640, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29338327

ABSTRACT

2-deoxy-2-(18Fluorine)-fluoro-D-glucose (FDG) PET/CT is an integral part of lung carcinoma staging and frequently used in the assessment of solitary pulmonary nodules. However, a limitation of conventional three-dimensional PET/CT when imaging the thorax is its susceptibility to motion artefact, which blurs the signal from the lesion resulting in inaccurate representation of size and metabolic activity. Respiratory gated (four-dimensional) PET/CT aims to negate the effects of motion artefact and provide a more accurate interpretation of pulmonary nodules and lymphadenopathy. There have been recent advances in technology and a shift from traditional hardware to more streamlined software methods for respiratory gating which should allow more widespread use of respiratory-gating in the future. The purpose of this article is to review the evidence surrounding four-dimensional PET/CT in pulmonary lesion characterisation.


Subject(s)
Positron Emission Tomography Computed Tomography/methods , Respiratory-Gated Imaging Techniques/methods , Solitary Pulmonary Nodule/diagnostic imaging , Artifacts , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/diagnostic imaging , Radiopharmaceuticals
SELECTION OF CITATIONS
SEARCH DETAIL
...