Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 51(8): 970-981, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37137719

ABSTRACT

Alterations in renal elimination processes of glomerular filtration and active tubular secretion by renal transporters can result in adverse drug reactions. Nonalcoholic steatohepatitis (NASH) alters hepatic transporter expression and xenobiotic elimination, but until recently, renal transporter alterations in NASH were unknown. This study investigates renal transporter changes in rodent models of NASH to identify a model that recapitulates human alterations. Quantitative protein expression by surrogate peptide liquid chromatography-coupled mass spectrometry (LC-MS/MS) on renal biopsies from NASH patients was used for concordance analysis with rodent models, including methionine/choline deficient (MCD), atherogenic (Athero), or control rats and Leprdb/db MCD (db/db), C57BL/6J fast-food thioacetamide (FFDTH), American lifestyle-induced obesity syndrome (ALIOS), or control mice. Demonstrating clinical similarity to NASH patients, db/db, FFDTH, and ALIOS showed decreases in glomerular filtration rate (GFR) by 76%, 28%, and 24%. Organic anion transporter 3 (OAT3) showed an upward trend in all models except the FFDTH (from 3.20 to 2.39 pmol/mg protein), making the latter the only model to represent human OAT3 changes. OAT5, a functional ortholog of human OAT4, significantly decreased in db/db, FFDTH, and ALIOS (from 4.59 to 0.45, 1.59, and 2.83 pmol/mg protein, respectively) but significantly increased for MCD (1.67 to 4.17 pmol/mg protein), suggesting that the mouse models are comparable to human for these specific transport processes. These data suggest that variations in rodent renal transporter expression are elicited by NASH, and the concordance analysis enables appropriate model selection for future pharmacokinetic studies based on transporter specificity. These models provide a valuable resource to extrapolate the consequences of human variability in renal drug elimination. SIGNIFICANCE STATEMENT: Rodent models of nonalcoholic steatohepatitis that recapitulate human renal transporter alterations are identified for future transporter-specific pharmacokinetic studies to facilitate the prevention of adverse drug reactions due to human variability.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Rats , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Rodentia/metabolism , Chromatography, Liquid , Mice, Inbred C57BL , Tandem Mass Spectrometry , Liver/metabolism , Methionine/metabolism , Choline/metabolism , Obesity/metabolism , Disease Models, Animal , Membrane Transport Proteins/metabolism
2.
Acta Pharm Sin B ; 13(1): 1-28, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36815037

ABSTRACT

The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.

3.
Drug Metab Dispos ; 51(2): 155-164, 2023 02.
Article in English | MEDLINE | ID: mdl-36328481

ABSTRACT

Alterations in hepatic transporters have been identified in precirrhotic chronic liver diseases (CLDs) that result in pharmacokinetic variations causing adverse drug reactions (ADRs). However, the effect of CLD on the expression of renal transporters is unknown despite the overwhelming evidence of kidney injury in CLD patients. This study determines the transcriptomic and proteomic expression profiles of renal drug transporters in patients with defined CLD etiology. Renal biopsies were obtained from patients with a history of CLD etiologies, including nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (ALD), viral hepatitis C (HCV), and combination ALD/HCV. A significant decrease in organic anion transporter (OAT)-3 was identified in NASH, ALD, HCV, and ALD/HCV (1.56 ± 1.10; 1.01 ± 0.46; 1.03 ± 0.43; 0.86 ± 0.57 pmol/mg protein) relative to control (2.77 ± 1.39 pmol/mg protein). Additionally, a decrease was shown for OAT4 in NASH (24.9 ± 5.69 pmol/mg protein) relative to control (43.8 ± 19.9 pmol/mg protein) and in urate transporter 1 (URAT1) for ALD and HCV (1.56 ± 0.15 and 1.65 ± 0.69 pmol/mg protein) relative to control (4.69 ± 4.59 pmol/mg protein). These decreases in organic anion transporter expression could result in increased and prolonged systemic exposure to drugs and possible toxicity. Renal transporter changes, in addition to hepatic transporter alterations, should be considered in dose adjustments for CLD patients for a more accurate disposition profile. It is important to consider a multiorgan approach to altered pharmacokinetics of drugs prescribed to CLD patients to prevent ADRs and improve patient outcomes. SIGNIFICANCE STATEMENT: Chronic liver diseases are known to elicit alterations in hepatic transporters that result in a disrupted pharmacokinetic profile for various drugs. However, it is unknown if there are alterations in renal transporters during chronic liver disease, despite strong indications of renal dysfunction associated with chronic liver disease. Identifying renal transporter expression changes in patients with chronic liver disease facilitates essential investigations on the multifaceted relationship between liver dysfunction and kidney physiology to offer dose adjustments and prevent adverse drug reactions.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Hepatitis C , Hepatitis, Viral, Human , Non-alcoholic Fatty Liver Disease , Organic Anion Transporters , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Proteomics , Ethanol , Organic Anion Transporters/metabolism
4.
Toxicol Sci ; 189(1): 62-72, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35789393

ABSTRACT

Inflammatory liver diseases, including nonalcoholic steatohepatitis (NASH), alcohol-associated liver disease (ALD), hepatitis C virus (HCV), and ALD/HCV, account for nearly 2 million deaths annually. Despite increasing evidence that liver dysfunction impacts renal physiology, there is limited supportive clinical information, due to limited diagnosis of liver disease, complexity in liver disease etiology, and inadequacy of renal function tests. Human kidney biopsies with liver and renal pathology were obtained from patients with nonalcoholic fatty liver disease (NAFLD), NASH, ALD, HCV, and ALD/HCV (n = 5-7). Each liver disease showed renal pathology with at least 50% interstitial nephritis, 50% interstitial fibrosis, and renal dysfunction by estimated glomerular filtration rate (NAFLD 36.7 ± 21.4; NASH 32.7 ± 15.0; ALD 16.0 ± 11.0; HCV 27.6 ± 11.5; ALD/HCV 21.0 ± 11.2 ml/min/1.73 m2). Transcriptomic analysis identified 55 genes with expression changes in a conserved direction in response to liver disease. Considering association with immune regulation, protein levels of alpha-2-macroglobulin, clusterin, complement C1q C chain (C1QC), CD163, and joining chain of multimeric IgA and IgM (JCHAIN) were further quantified by LC-MS/MS. C1QC demonstrated an increase in NASH, ALD, HCV, and ALD/HCV (42.9 ± 16.6; 38.8 ± 18.4; 39.0 ± 13.5; 40.1 ± 20.1 pmol/mg protein) relative to control (19.2 ± 10.4 pmol/mg protein; p ≤ 0.08). Renal expression changes identified in inflammatory liver diseases with interstitial pathology suggest the pathogenesis of liver associated renal dysfunction. This unique cohort overcomes diagnostic discrepancies and sample availability to provide insight for mechanistic investigations on the impact of liver dysfunction on renal physiology.


Subject(s)
Hepatitis C , Kidney Diseases , Liver Diseases, Alcoholic , Non-alcoholic Fatty Liver Disease , Chromatography, Liquid , Hepatitis C/complications , Humans , Kidney/pathology , Kidney/physiology , Kidney Diseases/etiology , Non-alcoholic Fatty Liver Disease/pathology , Tandem Mass Spectrometry
5.
Drug Metab Dispos ; 50(10): 1389-1395, 2022 10.
Article in English | MEDLINE | ID: mdl-34921099

ABSTRACT

Ochratoxin A (OTA) is an abundant mycotoxin, yet the toxicological impact of its disposition is not well studied. OTA is an organic anion transporter (OAT) substrate primarily excreted in urine despite a long half-life and extensive protein binding. Altered renal transporter expression during disease, including nonalcoholic steatohepatitis (NASH), may influence response to OTA exposure, but the impact of NASH on OTA toxicokinetics, tissue distribution, and associated nephrotoxicity is unknown. By inducing NASH in fast food-dieted/thioacetamide-exposed mice, we evaluated the effect of NASH on a bolus OTA exposure (12.5 mg/kg by mouth) after 3 days. NASH mice presented with less gross toxicity (44% less body weight loss), and kidney and liver weights of NASH mice were 11% and 24% higher, respectively, than healthy mice. Organ and body weight changes coincided with reduced renal proximal tubule cells vacuolation, degeneration, and necrosis, though no OTA-induced hepatic lesions were found. OTA systemic exposure in NASH mice increased modestly from 5.65 ± 1.10 to 7.95 ± 0.61 mg*h/ml per kg BW, and renal excretion increased robustly from 5.55% ± 0.37% to 13.11% ± 3.10%, relative to healthy mice. Total urinary excretion of OTA increased from 24.41 ± 1.74 to 40.07 ± 9.19 µg in NASH mice, and kidney-bound OTA decreased by ∼30%. Renal OAT isoform expression (OAT1-5) in NASH mice decreased by ∼50% with reduced OTA uptake by proximal convoluted cells. These data suggest that NASH-induced OAT transporter reductions attenuate renal secretion and reabsorption of OTA, increasing OTA urinary excretion and reducing renal exposure, thereby reducing nephrotoxicity in NASH. SIGNIFICANCE STATEMENT: These data suggest a disease-mediated transporter mechanism of altered tissue-specific toxicity after mycotoxin exposure, despite minimal systemic changes to ochratoxin A (OTA) concentrations. Further studies are warranted to evaluate the clinical relevance of this functional model and the potential effect of human nonalcoholic steatohepatitis on OTA and other organic anion substrate toxicity.


Subject(s)
Mycotoxins , Non-alcoholic Fatty Liver Disease , Organic Anion Transporters , Animals , Disease Models, Animal , Humans , Kidney/metabolism , Mice , Mycotoxins/metabolism , Mycotoxins/toxicity , Non-alcoholic Fatty Liver Disease/metabolism , Ochratoxins , Organic Anion Transporters/metabolism , Protein Isoforms/metabolism , Thioacetamide/metabolism
6.
Acta Pharm Sin B ; 11(12): 3869-3878, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35024313

ABSTRACT

Disease-mediated alterations to drug disposition constitute a significant source of adverse drug reactions. Cisplatin (CDDP) elicits nephrotoxicity due to exposure in proximal tubule cells during renal secretion. Alterations to renal drug transporter expression have been discovered during nonalcoholic steatohepatitis (NASH), however, associated changes to substrate toxicity is unknown. To test this, a methionine- and choline-deficient diet-induced rat model was used to evaluate NASH-associated changes to CDDP pharmacokinetics, transporter expression, and toxicity. NASH rats administered CDDP (6 mg/kg, i.p.) displayed 20% less nephrotoxicity than healthy rats. Likewise, CDDP renal clearance decreased in NASH rats from 7.39 to 3.83 mL/min, renal secretion decreased from 6.23 to 2.80 mL/min, and renal CDDP accumulation decreased by 15%, relative to healthy rats. Renal copper transporter-1 expression decreased, and organic cation transporter-2 and ATPase copper transporting protein-7b increased slightly, reducing CDDP secretion. Hepatic CDDP accumulation increased 250% in NASH rats relative to healthy rats. Hepatic organic cation transporter-1 induction and multidrug and toxin extrusion protein-1 and multidrug resistance-associated protein-4 reduction may contribute to hepatic CDDP sequestration in NASH rats, although no drug-related toxicity was observed. These data provide a link between NASH-induced hepatic and renal transporter expression changes and CDDP renal clearance, which may alter nephrotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL