Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 265: 116098, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38171148

ABSTRACT

Overexpression of the chromosome 21 DYRK1A gene induces morphological defects and cognitive impairments in individuals with Down syndrome (DS) and in DS mice models. Aging neurons of specific brain regions of patients with Alzheimer's disease, DS and Pick's disease have increased DYRK1A immunoreactivity suggesting a possible association of DYRK1A with neurofibrillary tangle pathology. Epigallocatechin-3-gallate (EGCG) displays appreciable inhibition of DYRK1A activity and, contrary to all other published inhibitors, EGCG is a non-competitive inhibitor of DYRK1A. Prenatal exposure to green tea polyphenols containing EGCG protects from brain defects induced by overexpression of DYRK1A. In order to produce more robust and possibly more active analogues of the natural compound EGCG, here we synthetized new EGCG-like molecules with several structural modifications to the EGCG skeleton. We replaced the ester boun of EGCG with a more resistant amide bond. We also replaced the oxygen ring by a methylene group. And finally, we positioned a nitrogen atom within this ring. The selected compound was shown to maintain the non-competitive property of EGCG and to correct biochemical and behavioral defects present in a DS mouse model. In addition it showed high stability and specificity.


Subject(s)
Catechin/analogs & derivatives , Down Syndrome , Humans , Female , Pregnancy , Mice , Animals , Down Syndrome/drug therapy , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Mice, Transgenic , Cognition
2.
Cell Mol Life Sci ; 80(12): 370, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989807

ABSTRACT

Individuals with Down syndrome (DS) have a higher prevalence of obesity compared to the general population. Conventionally, this has been attributed to endocrine issues and lack of exercise. However, deficits in neural reward responses and dopaminergic disturbances in DS may be contributing factors. To investigate this, we focused on a mouse model (Ts65Dn) bearing some triplicated genes homologous to trisomy 21. Through detailed meal pattern analysis in male Ts65Dn mice, we observed an increased preference for energy-dense food, pointing towards a potential "hedonic" overeating behavior. Moreover, trisomic mice exhibited higher scores in compulsivity and inflexibility tests when limited access to energy-dense food and quinine hydrochloride adulteration were introduced, compared to euploid controls. Interestingly, when we activated prelimbic-to-nucleus accumbens projections in Ts65Dn male mice using a chemogenetic approach, impulsive and compulsive behaviors significantly decreased, shedding light on a promising intervention avenue. Our findings uncover a novel mechanism behind the vulnerability to overeating and offer potential new pathways for tackling obesity through innovative interventions.


Subject(s)
Down Syndrome , Trisomy , Humans , Male , Mice , Animals , Down Syndrome/genetics , Disease Models, Animal , Prefrontal Cortex , Hyperphagia/genetics , Obesity/genetics
3.
Transl Psychiatry ; 13(1): 111, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015911

ABSTRACT

Early markers are needed for more effective prevention of Alzheimer's disease. We previously showed that individuals with Alzheimer's disease have decreased plasma DYRK1A levels compared to controls. We assessed DYRK1A in the plasma of cognitively healthy elderly volunteers, individuals with either Alzheimer's disease (AD), tauopathies or Down syndrome (DS), and in lymphoblastoids from individuals with DS. DYRK1A levels were inversely correlated with brain amyloid ß burden in asymptomatic elderly individuals and AD patients. Low DYRK1A levels were also detected in patients with tauopathies. Individuals with DS had higher DYRK1A levels than controls, although levels were lower in individuals with DS and with dementia. These data suggest that plasma DYRK1A levels could be used for early detection of at risk individuals of AD and for early detection of AD. We hypothesize that lack of increase of DYRK1A at middle age (40-50 years) could be a warning before the cognitive decline, reflecting increased risk for AD.


Subject(s)
Alzheimer Disease , Down Syndrome , Neurodegenerative Diseases , Tauopathies , Middle Aged , Humans , Aged , Adult , Alzheimer Disease/prevention & control , Alzheimer Disease/diagnosis , Amyloid beta-Peptides , Aging
4.
Front Neurosci ; 14: 670, 2020.
Article in English | MEDLINE | ID: mdl-32733190

ABSTRACT

Down syndrome (DS) is the most frequent chromosomal abnormality that causes intellectual disability, resulting from the presence of an extra complete or segment of chromosome 21 (HSA21). In addition, trisomy of HSA21 contributes to altered energy metabolism that appears to be a strong determinant in the development of pathological phenotypes associated with DS. Alterations include, among others, mitochondrial defects, increased oxidative stress levels, impaired glucose, and lipid metabolism, finally resulting in reduced energy production and cellular dysfunctions. These molecular defects seem to account for a high incidence of metabolic disorders, i.e., diabetes and/or obesity, as well as a higher risk of developing Alzheimer's disease (AD) in DS. A dysregulation of the insulin signaling with reduced downstream pathways represents a common pathophysiological aspect in the development of both peripheral and central alterations leading to diabetes/obesity and AD. This is further strengthened by evidence showing that the molecular mechanisms responsible for such alterations appear to be similar between peripheral organs and brain. Considering that DS subjects are at high risk to develop either peripheral or brain metabolic defects, this review will discuss current knowledge about the link between trisomy of HSA21 and defects of insulin and insulin-related pathways in DS. Drawing the molecular signature underlying these processes in DS is a key challenge to identify novel drug targets and set up new prevention strategies aimed to reduce the impact of metabolic disorders and cognitive decline.

5.
Mol Neurobiol ; 57(7): 3195-3205, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32504418

ABSTRACT

Alcoholism is a chronic relapsing disorder defined by loss of control over excessive consumption of ethanol despite damaging effects on the liver and brain. We previously showed that the overexpression in mice of Dyrk1A (TgDyrk1A, for dual-specificity tyrosine (Y) phosphorylation-regulated kinase 1A) reduces the severity of alcohol mediated liver injury. Ethanol consumption has also been associated with increased brain glutamate concentration that led to therapies targeting glutamatergic receptors and normalization of glutamatergic neurotransmission. Interestingly, mice overexpressing Dyrk1A (TgDyrk1A mice) present a reduction of glutamatergic brain transmission, which we propose could be protective against alcohol intake. To answer this question, we investigated the ethanol preference in TgDyrk1A mice using a two-bottle choice paradigm. TgDyrk1A mice showed a non-significant decrease of voluntary ethanol intake and ethanol preference compared with wild-type mice. At the peripheral level, mice overexpressing Dyrk1A show lower ethanol plasma levels, indicating a faster ethanol metabolism. At the end of the protocol, lasting 21 days, brains were extracted for protein analysis. Ethanol reduced levels of the synaptic protein PSD-95 and increased the glutamate decarboxylase GAD65, specifically in the cortex of TgDyrk1A mice. Our results suggest that overexpression of DYRK1A may cause different ethanol-induced changes in the brain.


Subject(s)
Brain/drug effects , Choice Behavior/physiology , Ethanol/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Synapses/metabolism , Animals , Brain/metabolism , Choice Behavior/drug effects , Disks Large Homolog 4 Protein/metabolism , Glutamate Decarboxylase/metabolism , Mice , Mice, Transgenic , Neurons/drug effects , Neurons/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Dyrk Kinases
6.
Biol Cell ; 112(2): 53-72, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31859373

ABSTRACT

BACKGROUND: Fibroblasts executing directional migration position their centrosome, and their Golgi apparatus, in front of the nucleus towards the cell leading edge. Centrosome positioning relative to the nucleus has been associated to mechanical forces exerted on the centrosome by the microtubule-dependent molecular motor cytoplasmic dynein 1, and to nuclear movements such as rearward displacement and rotation events. Dynein has been proposed to regulate the position of the centrosome by exerting pulling forces on microtubules from the cell leading edge, where the motor is enriched during migration. However, the mechanism explaining how dynein acts at the front of the cells has not been elucidated. RESULTS: We present here results showing that the protein Focal Adhesion Kinase (FAK) interacts with dynein and regulates the enrichment of the dynein/dynactin complex at focal adhesions at the cell the leading edge of migrating fibroblasts. This suggests that focal adhesions provide anchoring sites for dynein during the polarisation process. In support of this, we present evidence indicating that the interaction between FAK and dynein, which is regulated by the phosphorylation of FAK on its Ser732 residue, is required for proper centrosome positioning. Our results further show that the polarisation of the centrosome can occur independently of nuclear movements. Although FAK regulates both nuclear and centrosome motilities, downregulating the interaction between FAK and dynein affects only the nuclear independent polarisation of the centrosome. CONCLUSIONS: Our work highlights the role of FAK as a key player in the regulation of several aspects of cell polarity. We thus propose a model in which the transient localisation of dynein with focal adhesions provides a tuneable mechanism to bias dynein traction forces on microtubules allowing proper centrosome positioning in front of the nucleus. SIGNIFICANCE: We unravel here a new role for the cancer therapeutic target FAK in the regulation of cell morphogenesis.


Subject(s)
Cell Movement , Cell Polarity , Dyneins/metabolism , Focal Adhesion Kinase 1/metabolism , Animals , Dyneins/genetics , Focal Adhesion Kinase 1/genetics , Mice , NIH 3T3 Cells , Protein Transport
7.
Bio Protoc ; 9(14): e3308, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-33654818

ABSTRACT

Obesity is an important health problem with a strong environmental component that is acquiring pandemic proportion. The high availability of caloric dense foods promotes overeating potentially causing obesity. Animal models are key to validate novel therapeutic strategies, but researchers must carefully select the appropriate model to draw the right conclusions. Obesity is defined by an increased body mass index greater than 30 and characterized by an excess of adipose tissue. However, the regulation of food intake involves a close interrelationship between homeostatic and non-homeostatic factors. Studies in animal models have shown that intermittent access to sweetened or calorie-dense foods induces changes in feeding behavior. However, these studies are focused mainly on the final outcome (obesity) rather than on the primary dysfunction underlying the overeating of palatable foods. We describe a protocol to study overeating in mice using diet-induced obesity (DIO). This method can be applied to free choice between palatable food and a standard rodent chow or to forced intake of calorie-dense and/or palatable diets. Exposure to such diets is sufficient to promote changes in meal pattern that we register and analyze during the period of weight gain allowing the longitudinal characterization of feeding behavior in mice. Abnormal eating behaviors such as binge eating or snacking, behavioral alterations commonly observed in obese humans, can be detected using our protocol. In the free-choice procedure, mice develop a preference for the rewarding palatable food showing the reinforcing effect of this diet. Compulsive components of feeding are reflected by maintenance of feeding despite an adverse bitter taste caused by adulteration with quinine and by the negligence of standard chow when access to palatable food is ceased or temporally limited. Our strategy also enables to identify compulsive overeating in mice under a high-caloric regime by using limited food access and finally, we propose complementary behavioral tests to confirm the non-homeostatic food-taking triggered by these foods. Finally, we describe how to computationally explore large longitudinal behavioral datasets.

8.
Redox Biol ; 19: 200-209, 2018 10.
Article in English | MEDLINE | ID: mdl-30172984

ABSTRACT

Hyperhomocysteinemia due to cystathionine beta synthase (CBS) deficiency is associated with diverse cognitive dysfunction. Considering the role of the serine/threonine kinase DYRK1A, not only in developmental defects with life-long structural and functional consequences, but also in multiple neurodegenerative diseases, its protein expression and kinase activity has been analyzed in brain of heterozygous CBS deficient mice and found to be increased. We previously demonstrated that specific liver treatment with an adenovirus expressing Dyrk1A normalizes hepatic DYRK1A level and decreases hyperhomocysteinemia in mice with moderate to intermediate hyperhomocysteinemia. We here use a hepatocyte-specific recombinant adeno-associated viral (AAV) serotype 8-mediated DYRK1A gene therapy (AAV2/8-DYRK1A) to analyze the effect of hepatic Dyrk1A gene transfer on some altered molecular mechanisms in brain of mice with intermediate hyperhomocysteinemia. Our selective hepatic treatment alleviates altered DYRK1A protein level and signaling pathways in brain of mice, the MAPK/ERK and PI3K/Akt pathways initiated by receptor tyrosine kinase, the BDNF dependent TrkB pathway, and NFkB pathway. These results demonstrate the positive effect of AAV2/8-DYRK1A gene transfer on neuropathological and inflammatory processes in brain of mice with intermediate hyperhomocysteinemia.


Subject(s)
Brain/metabolism , Genetic Therapy/methods , Homocysteine/genetics , Hyperhomocysteinemia/genetics , Signal Transduction , Adenoviridae/genetics , Animals , Female , Gene Transfer Techniques , Homocysteine/metabolism , Hyperhomocysteinemia/metabolism , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Dyrk Kinases
9.
Addict Biol ; 23(2): 531-543, 2018 03.
Article in English | MEDLINE | ID: mdl-29318700

ABSTRACT

Obesity represents an important risk factor contributing to the global burden of disease. The current obesogenic environment with easy access to calorie-dense foods is fueling this obesity epidemic. However, how these foods contribute to the progression of feeding behavior changes that lead to overeating is not well understood and needs systematic assessment. Using novel automated methods for the high-throughput screening of behavior, we here examine mice meal pattern upon long-term exposure to a free-choice chocolate-mixture diet and a high-fat diet with face validity for a rapid development of obesity induced by unhealthy food regularly consumed in our societies. We identified rapid diet-specific behavioral changes after exposure to those high-caloric diets. Mice fed with high-fat chow, showed long-lasting meal pattern disturbances, which initiate with a stable loss of circadian feeding rhythmicity. Mice receiving a chocolate-mixture showed qualitatively similar changes, though less marked, consisting in a transient disruption of the feeding behavior and the circadian feeding rhytmicity. Strikingly, compulsive-like eating behavior is triggered immediately after exposure to both high-fat food and chocolate-mixture diet, well before any changes in body weight could be observed. We propose these changes as behavioral biomarkers of prodromal states of obesity that could allow early intervention.


Subject(s)
Chocolate , Diet, High-Fat , Energy Intake , Feeding Behavior , Obesity , Animals , Circadian Rhythm , Compulsive Behavior , Food , Hyperphagia , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...