Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cytogenet ; 15(1): 11, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35313946

ABSTRACT

INTRODUCTION: Analyses of miscarriage products indicate that the majority of aneuploidies in early developing embryos derive from errors occurring during maternal meiosis and the paternal contribution is less than 10%. Our aim was to assess the aneuploidy (mainly monosmies) frequencies at the earliest stages of embryo development, 3 days following fertilization during In vitro fertilization (IVF) treatments and to elucidate their parental origin. Later, we compared monosomies rates of day 3 to those of day 5 as demonstrated from Preimplantation Genetic Testing for Structural chromosomal Rearrangement (PGT-SR) results. METHODS: For a retrospective study, we collected data of 210 Preimplantation Genetic Testing for Monogenic Disorder (PGT-M) cycles performed between years 2008 and 2019.This study includes 2083 embryos, of 113 couples. It also included 432 embryos from 90 PGT-SR cycles of other 45 patients, carriers of balanced translocations. Defining the parental origin of aneuploidy in cleavage stage embryos was based on haplotypes analysis of at least six informative markers flanking the analyzed gene. For comprehensive chromosomal screening (CCS), chromosomal microarray (CMA) and next generation sequencing (NGS) was used. RESULTS: We inspected haplotype data of 40 genomic regions, flanking analyzed genes located on 9 different chromosomes.151 (7.2%) embryos presented numerical alterations in the tested chromosomes. We found similar paternal and maternal contribution to monosomy at cleavage stage. We demonstrated paternal origin in 51.5% of the monosomy, and maternal origin in 48.5% of the monosomies cases. CONCLUSION: In our study, we found equal parental contribution to monosomies in cleavage-stage embryos. Comparison to CCS analyses of PGT-SR patients revealed a lower rate of monosomy per chromosome in embryos at day 5 of development. This is in contrast to the maternal dominancy described in studies of early miscarriage. Mitotic errors and paternal involvement in chemical pregnancies and IVF failure should be re-evaluated. Our results show monosomies are relatively common and may play a role in early development of ART embryos.

2.
Mol Hum Reprod ; 21(3): 271-80, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25391299

ABSTRACT

Carriers of the balanced translocation t(11;22), the most common reciprocal translocation in humans, are at high risk of creating gametes with unbalanced translocation, leading to repeated miscarriages. Current research models for studying translocated embryos and the biological basis for their implantation failure are limited. The aim of this study was to elucidate whether human embryonic stem cells (hESCs) carrying the unbalanced chromosomal translocation t(11;22) can provide an explanation for repeated miscarriages of unbalanced translocated embryos. Fluorescent in situ hybridization and karyotype analysis were performed to analyze the t(11;22) in embryos during PGD and in the derived hESC line. The hESC line was characterized by RT-PCR and FACS analysis for pluripotent markers. Directed differentiation to trophoblasts was carried out by bone morphogenetic protein 4 (BMP4). Trophoblast development was analyzed by measuring ß-hCG secretion, by ß-hCG immunostaining and by gene expression of trophoblastic markers. We derived the first hESC line carrying unbalanced t(11;22), which showed the typical morphological and molecular characteristics of a hESC line. Control hESCs differentiated into trophoblasts secreted increasing levels of ß-hCG and concomitantly expressed the trophoblast genes, CDX2, TP63, KRT7, ERVW1, CGA, GCM1, KLF4 and PPARG. In contrast, differentiated translocated hESCs displayed reduced and delayed secretion of ß-hCG concomitant with impaired expression of the trophoblastic genes. The reduced activation of trophoblastic genes may be responsible for the impaired trophoblastic differentiation in t(11;22)-hESCs, associated with implantation failure in unbalanced t(11;22) embryos. Our t(11;22) hESCs are presented as a valuable human model for studying the mechanisms underlying implantation failure.


Subject(s)
Cell Line/metabolism , Embryonic Stem Cells/metabolism , Founder Effect , Models, Biological , Translocation, Genetic , Trophoblasts/metabolism , Abortion, Habitual/genetics , Abortion, Habitual/physiopathology , Biomarkers/metabolism , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Cell Differentiation , Cell Line/pathology , Chorionic Gonadotropin, beta Subunit, Human/genetics , Chorionic Gonadotropin, beta Subunit, Human/metabolism , Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 12 , Embryo Implantation , Embryonic Stem Cells/pathology , Female , Gene Expression , Humans , Karyotyping , Kruppel-Like Factor 4 , Pregnancy Proteins/genetics , Pregnancy Proteins/metabolism , Trophoblasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...