ABSTRACT
[This corrects the article DOI: 10.1371/journal.pgph.0000414.].
ABSTRACT
BACKGROUND: The impact of infection-induced immunity on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission has not been well established. Here we estimate the effects of prior infection induced immunity in adults and children on SARS-CoV-2 transmission in households. METHODS: We conducted a household cohort study from March 2020-November 2022 in Managua, Nicaragua; following a housheold SARS-CoV-2 infection, household members are closely monitored for infection. We estimate the association of time period, age, symptoms, and prior infection with secondary attack risk. RESULTS: Overall, transmission occurred in 70.2% of households, 40.9% of household contacts were infected, and the secondary attack risk ranged from 8.1% to 13.9% depending on the time period. Symptomatic infected individuals were more infectious (rate ratio [RR] 21.2, 95% confidence interval [CI]: 7.4-60.7) and participants with a prior infection were half as likely to be infected compared to naïve individuals (RR 0.52, 95% CI:.38-.70). In models stratified by age, prior infection was associated with decreased infectivity in adults and adolescents (secondary attack risk [SAR] 12.3, 95% CI: 10.3, 14.8 vs 17.5, 95% CI: 14.8, 20.7). However, although young children were less likely to transmit, neither prior infection nor symptom presentation was associated with infectivity. During the Omicron era, infection-induced immunity remained protective against infection. CONCLUSIONS: Infection-induced immunity is associated with decreased infectivity for adults and adolescents. Although young children are less infectious, prior infection and asymptomatic presentation did not reduce their infectivity as was seen in adults. As SARS-CoV-2 transitions to endemicity, children may become more important in transmission dynamics.
Subject(s)
COVID-19 , Adult , Child , Adolescent , Humans , Child, Preschool , SARS-CoV-2 , Cohort Studies , Family Characteristics , Nicaragua/epidemiologyABSTRACT
BACKGROUND: The current SARS-CoV-2 pandemic highlights the need for an increased understanding of coronavirus epidemiology. In a pediatric cohort in Nicaragua, we evaluate the seasonality and burden of common cold coronavirus (ccCoV) infection and evaluate likelihood of symptoms in reinfections. METHODS: Children presenting with symptoms of respiratory illness were tested for each of the four ccCoVs (NL63, 229E, OC43, and HKU1). Annual blood samples collected before ccCoV infection were tested for antibodies against each ccCoV. Seasonality was evaluated using wavelet and generalized additive model (GAM) analyses, and age-period effects were investigated using a Poisson model. We also evaluate the risk of symptom presentation between primary and secondary infections. RESULTS: In our cohort of 2576 children from 2011 to 2016, we observed 595 ccCoV infections and 107 cases of ccCoV-associated lower respiratory infection (LRI). The overall incidence rate was 61.1 per 1000 person years (95% confidence interval (CI): 56.3, 66.2). Children under two had the highest incidence of ccCoV infections and associated LRI. ccCoV incidence rapidly decreases until about age 6. Each ccCoV circulated throughout the year and demonstrated annual periodicity. Peaks of NL63 typically occurred 3 months before 229E peaks and 6 months after OC43 peaks. Approximately 69% of symptomatic ccCoV infections were secondary infections. There was slightly lower risk (rate ratio (RR): 0.90, 95% CI: 0.83, 0.97) of LRI between secondary and primary ccCoV infections among participants under the age of 5. CONCLUSIONS: ccCoV spreads annually among children with the greatest burden among ages 0-1. Reinfection is common; prior infection is associated with slight protection against LRI among the youngest children.
Subject(s)
COVID-19 , Coinfection , Common Cold , Respiratory Tract Infections , Child , Humans , Infant, Newborn , Infant , Common Cold/epidemiology , SARS-CoV-2 , COVID-19/epidemiologyABSTRACT
It has been proposed that as SARS-CoV-2 transitions to endemicity, children will represent the greatest proportion of SARS-Co-V-2 infections as they currently do with endemic coronavirus infections. While SARS-CoV-2 infection severity is low for children, it is unclear if SARS-CoV-2 infections are distinct in symptom presentation, duration, and severity from endemic coronavirus infections in children. We compared symptom risk and duration of endemic human coronavirus (HCoV) infections from 2011-2016 with SARS-CoV-2 infections from March 2020-September 2021 in a Nicaraguan pediatric cohort. Blood samples were collected from study participants annually in February-April. Respiratory samples were collected from participants that met testing criteria. Blood samples collected in were tested for SARS-CoV-2 antibodies and a subset of 2011-2016 blood samples from four-year-old children were tested for endemic HCoV antibodies. Respiratory samples were tested for each of the endemic HCoVs from 2011-2016 and for SARS-CoV-2 from 2020-2021 via rt-PCR. By April 2021, 854 (49%) cohort participants were ELISA positive for SARS-CoV-2 antibodies. Most participants had antibodies against one alpha and one beta coronavirus by age four. We observed 595 symptomatic endemic HCoV infections from 2011-2016 and 121 symptomatic with SARS-CoV-2 infections from March 2020-September 2021. Symptom presentation of SARS-CoV-2 infection and endemic coronavirus infections were very similar, and SARS-CoV-2 symptomatic infections were as or less severe on average than endemic HCoV infections. This suggests that, for children, SARS-CoV-2 may be just another endemic coronavirus. However, questions about the impact of variants and the long-term effects of SARS-CoV-2 remain.
ABSTRACT
Importance: The impact of the SARS-CoV-2 pandemic on children remains unclear. Better understanding of the burden of COVID-19 among children and their risk of reinfection is crucial, as they will be among the last groups vaccinated. Objective: To characterize the burden of COVID-19 and assess how risk of symptomatic reinfection may vary by age among children. Design, Setting, and Participants: In this prospective, community-based pediatric cohort study conducted from March 1, 2020, to October 15, 2021, 1964 nonimmunocompromised children aged 0 to 14 years were enrolled by random selection from the Nicaraguan Pediatric Influenza Cohort, a community-based cohort in District 2 of Managua, Nicaragua. Additional newborn infants aged 4 weeks or younger were randomly selected and enrolled monthly via home visits. Exposures: Prior COVID-19 infection as confirmed by positive anti-SARS-CoV-2 antibodies (receptor binding domain and spike protein) or real-time reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed COVID-19 infection at least 60 days before current COVID-19 infection. Main Outcomes and Measures: Symptomatic COVID-19 cases confirmed by real-time RT-PCR and hospitalization within 28 days of symptom onset of a confirmed COVID-19 case. Results: This cohort study assessed 1964 children (mean [SD] age, 6.9 [4.4] years; 985 [50.2%] male). Of 1824 children who were tested, 908 (49.8%; 95% CI, 47.5%-52.1%) were seropositive during the study. There were also 207 PCR-confirmed COVID-19 cases, 12 (5.8%) of which were severe enough to require hospitalization. Incidence of COVID-19 was highest among children younger than 2 years (16.1 cases per 100 person-years; 95% CI, 12.5-20.5 cases per 100 person-years), which was approximately 3 times the incidence rate in any other child age group assessed. In addition, 41 symptomatic SARS-CoV-2 episodes (19.8%; 95% CI, 14.4%-25.2%) were reinfections. Conclusions and Relevance: In this prospective, community-based pediatric cohort study, rates of symptomatic and severe COVID-19 were highest among the youngest participants, with rates stabilizing at approximately 5 years of age. In addition, symptomatic reinfections represented a large proportion of symptomatic COVID-19 cases.
Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Nicaragua/epidemiology , Prospective Studies , ReinfectionABSTRACT
It has been proposed that as SARS-CoV-2 transitions to endemicity, children will represent the greatest proportion of SARS-Co-V-2 infections as they currently do with endemic coronavirus infections. While SARS-CoV-2 infection severity is low for children, it is unclear if SARS-CoV-2 infections are distinct in symptom presentation, duration, and severity from endemic coronavirus infections in children. We compared symptom risk and duration of endemic human coronavirus (HCoV) infections from 2011-2016 with SARS-CoV-2 infections from March 2020-September 2021 in a Nicaraguan pediatric cohort. Blood samples were collected from study participants annually in February-April. Respiratory samples were collected from participants that met testing criteria. Blood samples collected in were tested for SARS-CoV-2 antibodies and a subset of 2011-2016 blood samples from four-year-old children were tested for endemic HCoV antibodies. Respiratory samples were tested for each of the endemic HCoVs from 2011-2016 and for SARS-CoV-2 from 2020-2021 via rt-PCR. By April 2021, 854 (49%) cohort participants were ELISA positive for SARS-CoV-2 antibodies. Most participants had antibodies against one alpha and one beta coronavirus by age four. We observed 595 symptomatic endemic HCoV infections from 2011-2016 and 121 symptomatic with SARS-CoV-2 infections from March 2020-September 2021. Symptom presentation of SARS-CoV-2 infection and endemic coronavirus infections were very similar, and SARS-CoV-2 symptomatic infections were as or less severe on average than endemic HCoV infections. This suggests that, for children, SARS-CoV-2 may be just another endemic coronavirus. However, questions about the impact of variants and the long-term effects of SARS-CoV-2 remain.
ABSTRACT
BACKGROUND: Many influenza studies assume that symptomatic and asymptomatic cases have equivalent antibody responses. METHODS: This study examines the relationship between influenza symptoms and serological response. Influenza-positive index cases and household members in Managua, Nicaragua, during 2012-2017 were categorized by symptom status. RESULTS: Antibody response was assessed using hemagglutination inhibition assays (HAI). Among 510 cases, 74.5% hadâ ≥4-fold increase in HAI antibodies, and 75.3% had febrile illness. In a logistic regression model, febrile cases had 2.17 times higher odds of a ≥4-fold titer rise compared to asymptomatic cases (95% confidence interval, 1.02-4.64). CONCLUSIONS: Studies relying on serological assays may not generalize to asymptomatic infections.