Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 86(7): 073702, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26233391

ABSTRACT

Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

2.
Rev Sci Instrum ; 85(8): 083116, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25173255

ABSTRACT

The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10-100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for "measure-and-sort" at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses.

3.
Opt Lett ; 39(18): 5325-8, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-26466262

ABSTRACT

Using balanced detection in both the radio frequency (RF) and the optical domain, we remotely synchronize the repetition rate of a Ti:sapphire oscillator to an Er-doped fiber oscillator through a 360 m length-stabilized dispersion compensated fiber link. The drift between these two optical oscillators is 3.3 fs root mean square (rms) over 24 hours. The 68 MHz Er-doped fiber oscillator is locked to a 476 MHz local RF reference clock, and serves as a master clock to distribute 10 fs-level timing signals through stabilized fiber links. This steady remote two-color optical-to-optical synchronization is an important step toward an integrated femtosecond fiber timing distribution system for free-electron lasers (FELs); it does not require x-ray pulses, and it makes sub-10-fs optical/x-ray pump-probe experiments feasible.

4.
Opt Express ; 19(22): 21855-65, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22109037

ABSTRACT

We present a new technique for measuring the relative delay between a soft x-ray FEL pulse and an optical laser that indicates a sub 25 fs RMS measurement error. An ultra-short x-ray pulse photo-ionizes a semiconductor (Si(3)N(4)) membrane and changes the optical transmission. An optical continuum pulse with a temporally chirped bandwidth spanning 630 nm-710 nm interacts with the membrane such that the timing of the x-ray pulse can be determined from the onset of the spectral modulation of the transmitted optical pulse. This experiment demonstrates a nearly in situ single-shot measurement of the x-ray pulse arrival time relative to the ultra-short optical pulse.

5.
Opt Lett ; 27(5): 291-3, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-18007780

ABSTRACT

We report on the development of what we consider to be a practical and highly stable stretched-pulse laser based on Yb(3+) -doped silica fiber. The Fabry-Perot cavity uses nonlinear polarization rotation as the mode-locking mechanism, and a semiconductor saturable-absorber mirror to ensure robust self-starting and incorporates a diffraction grating pair to compensate for the normal dispersion of the fiber. Use of a single-mode grating-stabilized telecommunications-qualified pump laser diode ensures reliable, low-noise operation (~0.05% amplitude fluctuations at 10-Hz measurement bandwidth). The laser generates high-quality, 60-pJ pulses of <110-fs duration at a repetition rate of ~54 MHz (3-mW average power).

SELECTION OF CITATIONS
SEARCH DETAIL
...