Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 454, 2022 07 30.
Article in English | MEDLINE | ID: mdl-35908040

ABSTRACT

The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use.


Subject(s)
COVID-19 , Hospitalization , Humans , Pandemics , Prospective Studies , SARS-CoV-2
2.
PLoS Med ; 19(4): e1003969, 2022 04.
Article in English | MEDLINE | ID: mdl-35442972

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is one of the most common and significant problems in patients with Coronavirus Disease 2019 (COVID-19). However, little is known about the incidence and impact of AKI occurring in the community or early in the hospital admission. The traditional Kidney Disease Improving Global Outcomes (KDIGO) definition can fail to identify patients for whom hospitalisation coincides with recovery of AKI as manifested by a decrease in serum creatinine (sCr). We hypothesised that an extended KDIGO (eKDIGO) definition, adapted from the International Society of Nephrology (ISN) 0by25 studies, would identify more cases of AKI in patients with COVID-19 and that these may correspond to community-acquired AKI (CA-AKI) with similarly poor outcomes as previously reported in this population. METHODS AND FINDINGS: All individuals recruited using the International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC)-World Health Organization (WHO) Clinical Characterisation Protocol (CCP) and admitted to 1,609 hospitals in 54 countries with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection from February 15, 2020 to February 1, 2021 were included in the study. Data were collected and analysed for the duration of a patient's admission. Incidence, staging, and timing of AKI were evaluated using a traditional and eKDIGO definition, which incorporated a commensurate decrease in sCr. Patients within eKDIGO diagnosed with AKI by a decrease in sCr were labelled as deKDIGO. Clinical characteristics and outcomes-intensive care unit (ICU) admission, invasive mechanical ventilation, and in-hospital death-were compared for all 3 groups of patients. The relationship between eKDIGO AKI and in-hospital death was assessed using survival curves and logistic regression, adjusting for disease severity and AKI susceptibility. A total of 75,670 patients were included in the final analysis cohort. Median length of admission was 12 days (interquartile range [IQR] 7, 20). There were twice as many patients with AKI identified by eKDIGO than KDIGO (31.7% versus 16.8%). Those in the eKDIGO group had a greater proportion of stage 1 AKI (58% versus 36% in KDIGO patients). Peak AKI occurred early in the admission more frequently among eKDIGO than KDIGO patients. Compared to those without AKI, patients in the eKDIGO group had worse renal function on admission, more in-hospital complications, higher rates of ICU admission (54% versus 23%) invasive ventilation (45% versus 15%), and increased mortality (38% versus 19%). Patients in the eKDIGO group had a higher risk of in-hospital death than those without AKI (adjusted odds ratio: 1.78, 95% confidence interval: 1.71 to 1.80, p-value < 0.001). Mortality and rate of ICU admission were lower among deKDIGO than KDIGO patients (25% versus 50% death and 35% versus 70% ICU admission) but significantly higher when compared to patients with no AKI (25% versus 19% death and 35% versus 23% ICU admission) (all p-values <5 × 10-5). Limitations include ad hoc sCr sampling, exclusion of patients with less than two sCr measurements, and limited availability of sCr measurements prior to initiation of acute dialysis. CONCLUSIONS: An extended KDIGO definition of AKI resulted in a significantly higher detection rate in this population. These additional cases of AKI occurred early in the hospital admission and were associated with worse outcomes compared to patients without AKI.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , COVID-19/complications , COVID-19/diagnosis , Female , Hospital Mortality , Humans , Intensive Care Units , Kidney/physiology , Male , Retrospective Studies , Risk Factors , SARS-CoV-2 , World Health Organization
3.
PeerJ Comput Sci ; 7: e582, 2021.
Article in English | MEDLINE | ID: mdl-34151001

ABSTRACT

Shapley values have become increasingly popular in the machine learning literature, thanks to their attractive axiomatisation, flexibility, and uniqueness in satisfying certain notions of 'fairness'. The flexibility arises from the myriad potential forms of the Shapley value game formulation. Amongst the consequences of this flexibility is that there are now many types of Shapley values being discussed, with such variety being a source of potential misunderstanding. To the best of our knowledge, all existing game formulations in the machine learning and statistics literature fall into a category, which we name the model-dependent category of game formulations. In this work, we consider an alternative and novel formulation which leads to the first instance of what we call model-independent Shapley values. These Shapley values use a measure of non-linear dependence as the characteristic function. The strength of these Shapley values is in their ability to uncover and attribute non-linear dependencies amongst features. We introduce and demonstrate the use of the energy distance correlations, affine-invariant distance correlation, and Hilbert-Schmidt independence criterion as Shapley value characteristic functions. In particular, we demonstrate their potential value for exploratory data analysis and model diagnostics. We conclude with an interesting expository application to a medical survey data set.

SELECTION OF CITATIONS
SEARCH DETAIL
...