Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Sci Adv ; 10(14): eadl4600, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579006

ABSTRACT

Quantifying the structural variants (SVs) in nonhuman primates could provide a niche to clarify the genetic backgrounds underlying human-specific traits, but such resource is largely lacking. Here, we report an accurate SV map in a population of 562 rhesus macaques, verified by in-house benchmarks of eight macaque genomes with long-read sequencing and another one with genome assembly. This map indicates stronger selective constrains on inversions at regulatory regions, suggesting a strategy for prioritizing them with the most important functions. Accordingly, we identified 75 human-specific inversions and prioritized them. The top-ranked inversions have substantially shaped the human transcriptome, through their dual effects of reconfiguring the ancestral genomic architecture and introducing regional mutation hotspots at the inverted regions. As a proof of concept, we linked APCDD1, located on one of these inversions and down-regulated specifically in humans, to neuronal maturation and cognitive ability. We thus highlight inversions in shaping the human uniqueness in brain development.


Subject(s)
Genome , Genomics , Animals , Humans , Macaca mulatta , Brain
2.
Eur J Hum Genet ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38467733

ABSTRACT

Familial cortical myoclonic tremor with epilepsy type 1 (FCMTE1) is caused by (TTTTA)exp(TTTCA)exp repeat expansions in SAMD12, while pure (TTTTA)exp is polymorphic. Our investigation focused on the origin and evolution of pure (TTTTA)exp and (TTTTA)exp(TTTCA)exp at this locus. We observed a founder effect between them. The phylogenetic analysis suggested that the (TTTTA)exp(TTTCA)exp might be generated from pure (TTTTA)exp through infrequent transformation events. Long-read sequencing revealed somatic generation of (TTTTA)exp(TTTCA)exp from pure (TTTTA)exp, likely via long segment (TTTCA) repeats insertion. Our findings indicate close relationships between the non-pathogenic (TTTTA)exp and the pathogenic (TTTTA)exp(TTTCA)exp, with dynamic interconversions. This sheds light on the genesis of pathogenic repeat expansions from ancestral premutation alleles. Our results may guide future studies in detecting novel repeat expansion disorders and elucidating repeat expansion mutational processes, thereby enhancing our understanding of human genomic variation.

3.
Int Ophthalmol ; 43(8): 2653-2668, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36941506

ABSTRACT

PURPOSE: This paper aimed to assess the diagnostic utility of a newly developed gene-based technology-nanopore targeted sequencing (NTS) in suspected endophthalmitis patients. METHODS: This retrospective study included 43 patients (44 eyes) with suspected endophthalmitis. NTS was applied along with microbiological culture to detect unknown pathogens in intraocular fluid samples. The diagnostic utility of NTS was mainly evaluated from three aspects, including the positivity rate of bacterial/fungal presence, diagnostic turnaround time and the frequency of change in treatment based on etiology test results. Non-parametric, two-sided Wilcoxon rank sum test, the McNemar's test and the kappa statistic were used for statistical comparisons. RESULTS: NTS showed significant advantages over traditional culture in positivity rates and diagnostic time (P < 0.001, kappa = 0.082; Z = -5.805, P < 0. 001). As regards antibiotic strategy, 17 patients (39.53%) and 5 patients (11.63%) underwent medication change following NTS and culture results respectively (P < 0.001, kappa = 0.335). With reasonable use of antibiotic and surgical intervention, most patients responded favorably, judged by significantly improved visual acuity (Z = -4.249, P < 0.001). The mean duration of hospitalization was 8.49 ± 2.45 days (range, 1-16 days). CONCLUSION: The high efficiency feature of NTS in pathogen detection renders it a valuable supplementary to traditional culture. Additionally, it has facilitated patients' management for the early and precise diagnosis of endophthalmitis.


Subject(s)
Endophthalmitis , Eye Infections, Bacterial , Nanopores , Humans , Retrospective Studies , Endophthalmitis/etiology , Aqueous Humor/microbiology , Anti-Bacterial Agents/therapeutic use , Eye Infections, Bacterial/microbiology
4.
J Cell Mol Med ; 27(4): 506-514, 2023 02.
Article in English | MEDLINE | ID: mdl-36722317

ABSTRACT

Traditional microbiological methodology has limited sensitivity, detection range, and turnaround times in diagnosis of bloodstream infection in Febrile Neutropenia (FN) patients. A more rapid and sensitive detection technology is urgently needed. Here we used the newly developed Nanapore targeted sequencing (NTS) to diagnose the pathogens in blood samples. The diagnostic performance (sensitivity, specificity and turnaround time) of NTS detection of 202 blood samples from FN patients with hematologic disease was evaluated in comparison to blood culture and nested Polymerase Chain Reaction (PCR) followed by sanger sequence. The impact of NTS results on antibiotic treatment modification, the effectivity and mortality of the patients under the guidance of NTS results were assessed. The data showed that NTS had clinical sensitivity of 92.11%, clinical specificity of 78.41% compared with the blood culture and PCR combination. Importantly, the turnaround time for NTS was <24 h for all specimens, and the pre-report time within 6 h in emergency cases was possible in clinical practice. Among 118 NTS positive patients, 98.3% patients' antibiotic regimens were guided according to NTS results. There was no significant difference in effectivity and mortality rate between Antibiotic regimen switched according to NTS group and Antibiotic regimen covering pathogens detected by NTS group. Therefore, NTS could yield a higher sensitivity, specificity and shorter turnaround time for broad-spectrum pathogens identification in blood samples detection compared with traditional tests. It's also a good guidance in clinical targeted antibiotic treatment for FN patients with hematologic disease, thereby emerging as a promising technology for detecting infectious disease.


Subject(s)
Anti-Infective Agents , Communicable Diseases , Febrile Neutropenia , Hematologic Diseases , Nanopores , Sepsis , Humans , Febrile Neutropenia/diagnosis , Febrile Neutropenia/drug therapy , Anti-Bacterial Agents/therapeutic use
5.
J Pers Med ; 13(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36836409

ABSTRACT

Unambiguous evidence indicates that microbes are closely linked to various human diseases, including cancer. Most prior work investigating the microbiome of breast tissue describes an association between compositional differences of microbial species in benign and malignant tissues, but few studies have examined the relative abundance of microbial communities within human breast tissue at the species level. In this work, a total of 44 breast tissue samples including benign and malignant tissues with adjacent normal breast tissue pairs were collected, and Oxford Nanopore long-read sequencing was employed to assess breast tissue microbial signatures. Nearly 900 bacterial species were detected from the four dominant phyla: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The bacteria with the highest abundance in all breast tissues was Ralstonia pickettii, and its relative abundance increased with decreasing malignancy. We further examined the breast-tissue microbiome composition with different hormone-receptor statuses, and the relative abundance of the genus Pseudomonas increased most significantly in breast tissues. Our study provides a rationale for exploring microbiomes associated with breast carcinogenesis and cancer development. Further large-cohort investigation of the breast microbiome is necessary to characterize a microbial risk signature and develop potential microbial-based prevention therapies.

6.
Cell Host Microbe ; 30(3): 329-339.e5, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35108497

ABSTRACT

Testosterone deficiency can lead to depressive symptoms in humans; however, the causes of this deficiency are incompletely understood. Here, we isolated Mycobacterium neoaurum from the fecal samples of testosterone-deficient patients with depression and showed that this strain could degrade testosterone in vitro. Furthermore, gavaging rats with M. neoaurum reduced their serum and brain testosterone levels and induced depression-like behaviors. We identified the gene encoding 3ß-hydroxysteroid dehydrogenase (3ß-HSD) as the enzyme causing testosterone degradation. Introducing 3ß-HSD into Escherichia coli enhanced its ability to degrade testosterone. Gavaging rats with 3ß-HSD-producing E. coli reduced their serum and brain testosterone levels and caused depression-like behaviors. Finally, compared with 16.67% of participants without depression, 42.99% (46/107) of the fecal samples of patients with depression harbored 3ß-HSD, and 60.87% (28/46) of these fecal samples expressed 3ß-HSD. These results suggest that 3ß-HSD expressed by gut microbes may be associated with depressive symptoms due to testosterone degradation.


Subject(s)
Gastrointestinal Microbiome , Testosterone , 3-Hydroxysteroid Dehydrogenases/genetics , 3-Hydroxysteroid Dehydrogenases/metabolism , Animals , Depression , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Male , Rats , Testosterone/metabolism
7.
J Invest Surg ; 35(3): 639-646, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34036894

ABSTRACT

BACKGROUND: The etiology of granulomatous lobular mastitis (GLM) remains unknown. This study aimed to detect bacteria in GLM using Nanopore sequencing and identify the relationship between GLM and Corynebacterium kroppenstedtii. METHODS AND MATERIALS: The bacterial detection on fresh samples (including breast pus and tissue) of 50 GLM patients using nanopore sequencing and culture methods. The bacterial detection rate of participants with different stages were compared and analyzed. Formalin-fixed and paraffin-embedded (FFPE) tissues from 39 patients were performed on Gram staining to identify Gram-positive bacilli (GPB) within lipid vacuoles. Moreover, the clinicopathological characteristics of GLM patients in different bacterial subgroups were also conducted. RESULTS: In 50 GLM patients, the detection rate of bacteria was 78% using nanopore sequencing method, especially in the early stage of GLM (over 80%), which was significantly higher than that using culture methods (24%, p < 0.001). The dominant bacteria were Corynebacterium species (64%), especially for the Corynebacterium kroppenstedtii. The detection rate of C. kroppenstedtii in nanopore sequencing method (56%) was higher than that in culture methods (16%, p < 0.001). Gram staining positive of bacteria in 7 patients, and 5 of them were C. kroppenstedtii. Thirty-one patients (31/39, 79.5%) exhibited typical histological structure of cystic neutrophilic granulomatous mastitis (CNGM), and eighteen patients detected with C. kroppenstedtii. CONCLUSION: Nanopore sequencing showed rapid and accurate bacteria detection over culture method in GLM patients. GLM is not sterile inflammation and closely related to C. kroppenstedtii. CNGM was associated with Corynebacterium infection, especially for C. kroppenstedtii.


Subject(s)
Corynebacterium Infections , Granulomatous Mastitis , Nanopore Sequencing , Corynebacterium/genetics , Corynebacterium Infections/diagnosis , Corynebacterium Infections/drug therapy , Female , Humans
9.
Clin Exp Ophthalmol ; 49(9): 1060-1068, 2021 12.
Article in English | MEDLINE | ID: mdl-34463015

ABSTRACT

BACKGROUND: Microorganism identification is critical for the early diagnosis and management of infectious endophthalmitis, but traditional culture can yield false-negative results. Nanopore targeted sequencing (NTS) is a third-generation sequencing technique with multiple advantages. This study aimed to test aqueous humour or vitreous fluid samples from presumed cases of infectious endophthalmitis using NTS to evaluate the feasibility of NTS in diagnosing endophthalmitis, especially for culture-negative cases. METHODS: This prospective study enrolled patients who presented to the Department of Ophthalmology of Union Hospital (Wuhan, China) between June 2018 and December 2020. The samples were sent immediately for routine microbiology culture processing and NTS assay. RESULTS: NTS identified microorganisms in 17 of 18 cases (94.4%) (eight culture-positive cases, nine culture-negative cases, and one case unavailable for culture). There was a high-quality match between culture and NTS for culture-positive cases. In the eight culture-negative cases and the case unavailable for culture, NTS detected either bacteria, fungi, or a mixture of bacteria and fungi in the intraocular fluids. The average waiting times for the results of bacterial and fungal cultures were 48 and 72 h, respectively. The average time for the NTS results was 12 h. CONCLUSIONS: NTS appears to be a promising diagnostic platform for diagnosing infectious endophthalmitis, even for culture-negative cases.


Subject(s)
Endophthalmitis , Eye Infections, Bacterial , Nanopores , Bacteria , Endophthalmitis/diagnosis , Eye Infections, Bacterial/diagnosis , Humans , Prospective Studies , Vitreous Body
11.
Small ; 16(32): e2002169, 2020 08.
Article in English | MEDLINE | ID: mdl-32578378

ABSTRACT

The ongoing global novel coronavirus pneumonia COVID-19 outbreak has engendered numerous cases of infection and death. COVID-19 diagnosis relies upon nucleic acid detection; however, currently recommended methods exhibit high false-negative rates and are unable to identify other respiratory virus infections, thereby resulting in patient misdiagnosis and impeding epidemic containment. Combining the advantages of targeted amplification and long-read, real-time nanopore sequencing, herein, nanopore targeted sequencing (NTS) is developed to detect SARS-CoV-2 and other respiratory viruses simultaneously within 6-10 h, with a limit of detection of ten standard plasmid copies per reaction. Compared with its specificity for five common respiratory viruses, the specificity of NTS for SARS-CoV-2 reaches 100%. Parallel testing with approved real-time reverse transcription-polymerase chain reaction kits for SARS-CoV-2 and NTS using 61 nucleic acid samples from suspected COVID-19 cases show that NTS identifies more infected patients (22/61) as positive, while also effectively monitoring for mutated nucleic acid sequences, categorizing types of SARS-CoV-2, and detecting other respiratory viruses in the test sample. NTS is thus suitable for COVID-19 diagnosis; moreover, this platform can be further extended for diagnosing other viruses and pathogens.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Nanopores , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Betacoronavirus/classification , COVID-19 , Coronavirus Infections/epidemiology , DNA, Viral/genetics , DNA, Viral/isolation & purification , Genes, Viral , Humans , Limit of Detection , Mutation , Nanotechnology , Nucleic Acid Amplification Techniques/statistics & numerical data , Pandemics , Pneumonia, Viral/epidemiology , RNA, Viral/genetics , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
12.
J Ind Microbiol Biotechnol ; 47(2): 275-285, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31853778

ABSTRACT

Maduramicin is the most efficient and possesses the largest market share of all anti-coccidiosis polyether antibiotics (ionophore); however, its biosynthetic gene cluster (BGC) has yet to been identified, and the associated strains have not been genetically engineered. Herein, we performed whole-genome sequencing of a maduramicin-producing industrial strain of Actinomadura sp. J1-007 and identified its BGC. Additionally, we analyzed the identified BGCs in silico to predict the biosynthetic pathway of maduramicin. We then developed a conjugation method for the non-spore-forming Actinomadura sp. J1-007, consisting of a site-specific integration method for gene overexpression. The maduramicin titer increased by 30% to 7.16 g/L in shake-flask fermentation following overexpression of type II thioesterase MadTE that is the highest titer at present. Our findings provide insights into the biosynthetic mechanism of polyethers and provide a platform for the metabolic engineering of maduramicin-producing microorganisms for overproduction and development of maduramicin analogs in the future.


Subject(s)
Actinomycetales/genetics , Anti-Bacterial Agents/metabolism , Lactones/metabolism , Multigene Family , Actinomycetales/metabolism , Genomics , Metabolic Engineering/methods
13.
View (Beijing) ; 1(1): e4, 2020 Mar.
Article in English | MEDLINE | ID: mdl-38607796

ABSTRACT

A very recent outbreak of the novel coronavirus, COVID-19, in the city of Wuhan, China, in December 2019 and its subsequent spread within and across China have resulted in several deaths and infections. Presently, nucleic acid amplification test is essential for the confirmation of COVID infection. In this report, we summarized the six promising methods, including whole-genome sequencing, real-time reverse transcription polymerase chain reaction, nanopore target sequencing, antibody-based immunoassay techniques, use of paper-based biomolecular sensors, and the clustered regularly interspaced short palindromic repeats-Cas system-based technology, which can also be deployed for the detection of SARS-CoV-2. We further introduced the principles of these methods, discussed the scope and practicability of application of the available products and methods, and highlighted the potential approaches to develop additional products and techniques for early diagnosis of COVID-19.

14.
Mov Disord ; 34(10): 1571-1576, 2019 10.
Article in English | MEDLINE | ID: mdl-31483537

ABSTRACT

BACKGROUND: Intronic (TTTCA)n insertions in the SAMD12, TNRC6A, and RAPGEF2 genes have been identified as causes of familial cortical myoclonic tremor with epilepsy. OBJECTIVE: To identify the cause of familial cortical myoclonic tremor with epilepsy pedigrees without (TTTCA)n insertions in SAMD12, TNRC6A, and RAPGEF2. METHODS: Repeat-primed polymerase chain reaction, long-range polymerase chain reaction, and Sanger sequencing were performed to identify the existence of a novel (TTTGA)n insertion. Targeted long-read sequencing was performed to confirm the accurate structure of the (TTTGA)n insertion. RESULTS: We identified a novel expanded intronic (TTTGA)n insertion at the same site as the previously reported (TTTCA)n insertion in SAMD12. This insertion cosegregated with familial cortical myoclonic tremor with epilepsy in 1 Chinese pedigree with no (TTTCA)n insertion. In the targeted long-read sequencing of 2 patients and 1 asymptomatic carrier in this pedigree, with 1 previously reported (TTTCA)n -insertion-carrying patient as a positive control, a respective total of 302, 159, 207, and 50 on-target subreads (predicated accuracy: ≥90%) spanning the target repeat expansion region were generated. These sequencing data revealed the accurate repeat expansion structures as (TTTTA)114-123 (TTTGA)108-116 in the pedigree and (TTTTA)38 (TTTCA)479 in (TTTCA)n -insertion-carrying patient. CONCLUSION: The targeted long-read sequencing helped us to elucidate the accurate structures of the (TTTGA)n and (TTTCA)n insertions. Our finding offers a novel possible cause for familial cortical myoclonic tremor with epilepsy and might shed light on the identification of genetic causes of this disease in pedigrees with no detected (TTTCA)n insertion in the reported causative genes. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Epilepsies, Myoclonic/genetics , Nerve Tissue Proteins/genetics , Tremor/genetics , Adult , Asian People , Epilepsies, Myoclonic/complications , Humans , Introns/physiology , Male , Pedigree , Tremor/complications
15.
Nat Commun ; 10(1): 1216, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872580

ABSTRACT

Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.


Subject(s)
Genome, Plant/genetics , Glycine max/genetics , Plant Breeding/methods , Quantitative Trait Loci/genetics , Biological Evolution , DNA Copy Number Variations , Domestication , Genomics/methods , Genotype , Molecular Sequence Annotation , Peptides/genetics , Plant Proteins/genetics , Translocation, Genetic/genetics
16.
Ann Clin Microbiol Antimicrob ; 17(1): 43, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30567558

ABSTRACT

BACKGROUND: Pathogens identification is critical for the proper diagnosis and precise treatment of infective endocarditis (IE). Although blood and valve cultures are the gold standard for IE pathogens detection, many cases are culture-negative, especially in patients who had received long-term antibiotic treatment, and precise diagnosis has therefore become a major challenge in the clinic. Metagenomic sequencing can provide both information on the pathogenic strain and the antibiotic susceptibility profile of patient samples without culturing, offering a powerful method to deal with culture-negative cases. METHODS: To assess the feasibility of a metagenomic approach to detect the causative pathogens in resected valves from IE patients, we employed both next-generation sequencing and Oxford Nanopore Technologies MinION nanopore sequencing for pathogens and antimicrobial resistance detection in seven culture-negative IE patients. Using our in-house developed bioinformatics pipeline, we analyzed the sequencing results generated from both platforms for the direct identification of pathogens from the resected valves of seven clinically culture-negative IE patients according to the modified Duke criteria. RESULTS: Our results showed both metagenomics methods can be applied for the causative pathogen detection in all IE samples. Moreover, we were able to simultaneously characterize respective antimicrobial resistance features. CONCLUSION: Metagenomic methods for IE detection can provide clinicians with valuable information to diagnose and treat IE patients after valve replacement surgery. However, more efforts should be made to optimize protocols for sample processing, sequencing and bioinformatics analysis.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Endocarditis, Bacterial/microbiology , Endocarditis/microbiology , Adult , Aged , Bacteria/classification , Bacteria/growth & development , Female , Humans , Male , Metagenomics , Middle Aged
17.
Mol Biol Evol ; 34(10): 2453-2468, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28957512

ABSTRACT

Recent RNA-seq technology revealed thousands of splicing events that are under rapid evolution in primates, whereas the reliability of these events, as well as their combination on the isoform level, have not been adequately addressed due to its limited sequencing length. Here, we performed comparative transcriptome analyses in human and rhesus macaque cerebellum using single molecule long-read sequencing (Iso-seq) and matched RNA-seq. Besides 359 million RNA-seq reads, 4,165,527 Iso-seq reads were generated with a mean length of 14,875 bp, covering 11,466 human genes, and 10,159 macaque genes. With Iso-seq data, we substantially expanded the repertoire of alternative RNA processing events in primates, and found that intron retention and alternative polyadenylation are surprisingly more prevalent in primates than previously estimated. We then investigated the combinatorial mode of these alternative events at the whole-transcript level, and found that the combination of these events is largely independent along the transcript, leading to thousands of novel isoforms missed by current annotations. Notably, these novel isoforms are selectively constrained in general, and 1,119 isoforms have even higher expression than the previously annotated major isoforms in human, indicating that the complexity of the human transcriptome is still significantly underestimated. Comparative transcriptome analysis further revealed 502 genes encoding selectively constrained, lineage-specific isoforms in human but not in rhesus macaque, linking them to some lineage-specific functions. Overall, we propose that the independent combination of alternative RNA processing events has contributed to complex isoform evolution in primates, which provides a new foundation for the study of phenotypic difference among primates.


Subject(s)
Alternative Splicing/genetics , RNA Isoforms/genetics , Sequence Analysis, RNA/methods , Animals , Cerebellum , Evolution, Molecular , Exons , Gene Expression Profiling , Humans/genetics , Macaca mulatta/genetics , RNA/genetics , RNA Isoforms/metabolism , RNA Processing, Post-Transcriptional/genetics , Reproducibility of Results , Transcriptome/genetics
18.
Nat Commun ; 7: 12065, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27356984

ABSTRACT

Short-read sequencing has enabled the de novo assembly of several individual human genomes, but with inherent limitations in characterizing repeat elements. Here we sequence a Chinese individual HX1 by single-molecule real-time (SMRT) long-read sequencing, construct a physical map by NanoChannel arrays and generate a de novo assembly of 2.93 Gb (contig N50: 8.3 Mb, scaffold N50: 22.0 Mb, including 39.3 Mb N-bases), together with 206 Mb of alternative haplotypes. The assembly fully or partially fills 274 (28.4%) N-gaps in the reference genome GRCh38. Comparison to GRCh38 reveals 12.8 Mb of HX1-specific sequences, including 4.1 Mb that are not present in previously reported Asian genomes. Furthermore, long-read sequencing of the transcriptome reveals novel spliced genes that are not annotated in GENCODE and are missed by short-read RNA-Seq. Our results imply that improved characterization of genome functional variation may require the use of a range of genomic technologies on diverse human populations.


Subject(s)
Asian People/genetics , Genome, Human , Genomic Structural Variation , Humans , Male , Sequence Analysis, DNA , Sequence Analysis, RNA , Transcriptome
19.
Antimicrob Agents Chemother ; 60(5): 3232-5, 2016 05.
Article in English | MEDLINE | ID: mdl-26976864

ABSTRACT

Cephalosporin-resistant Vibrio alginolyticus was first isolated from food products, with ß-lactamases encoded by blaPER-1, blaVEB-1, and blaCMY-2 being the major mechanisms mediating their cephalosporin resistance. The complete sequence of a multidrug resistance plasmid, pVAS3-1, harboring the blaCMY-2 and qnrVC4 genes was decoded in this study. Its backbone exhibited genetic homology to known IncA/C plasmids recoverable from members of the family Enterobacteriaceae, suggesting its possible origin in Enterobacteriaceae.


Subject(s)
Vibrio alginolyticus/drug effects , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Vibrio alginolyticus/enzymology , Vibrio alginolyticus/genetics , beta-Lactamases/genetics
20.
Nat Genet ; 47(2): 158-63, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25581428

ABSTRACT

Human papillomavirus (HPV) integration is a key genetic event in cervical carcinogenesis. By conducting whole-genome sequencing and high-throughput viral integration detection, we identified 3,667 HPV integration breakpoints in 26 cervical intraepithelial neoplasias, 104 cervical carcinomas and five cell lines. Beyond recalculating frequencies for the previously reported frequent integration sites POU5F1B (9.7%), FHIT (8.7%), KLF12 (7.8%), KLF5 (6.8%), LRP1B (5.8%) and LEPREL1 (4.9%), we discovered new hot spots HMGA2 (7.8%), DLG2 (4.9%) and SEMA3D (4.9%). Protein expression from FHIT and LRP1B was downregulated when HPV integrated in their introns. Protein expression from MYC and HMGA2 was elevated when HPV integrated into flanking regions. Moreover, microhomologous sequence between the human and HPV genomes was significantly enriched near integration breakpoints, indicating that fusion between viral and human DNA may have occurred by microhomology-mediated DNA repair pathways. Our data provide insights into HPV integration-driven cervical carcinogenesis.


Subject(s)
Alphapapillomavirus/physiology , Gene Expression Regulation, Neoplastic , Papillomavirus Infections/genetics , Uterine Cervical Dysplasia/genetics , Uterine Cervical Neoplasms/genetics , Virus Integration , Adult , Alphapapillomavirus/genetics , Alphapapillomavirus/isolation & purification , Base Sequence , Cell Line, Tumor , DNA, Viral/genetics , Down-Regulation , Female , Gene Expression Profiling , Genome, Human/genetics , Genome, Viral/genetics , Genome-Wide Association Study , Humans , Middle Aged , Molecular Sequence Data , Papillomavirus Infections/virology , Sequence Analysis, DNA , Up-Regulation , Uterine Cervical Neoplasms/virology , Uterine Cervical Dysplasia/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...