Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Biomater Sci ; 12(11): 2978-2992, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38683548

ABSTRACT

Inhalable nanomedicines are increasingly being developed to optimise the pharmaceutical treatment of respiratory diseases. Large lipid-based nanosystems at the forefront of the inhalable nanomedicines development pipeline, though, have a number of limitations. The objective of this study was, therefore, to investigate the utility of novel small lipidated sulfoxide polymers based on poly(2-(methylsulfinyl)ethyl acrylate) (PMSEA) as inhalable drug delivery platforms with tuneable membrane permeability imparted by differential albumin binding kinetics. Linear PMSEA (5 kDa) was used as a hydrophilic polymer backbone with excellent anti-fouling and stealth properties compared to poly(ethylene glycol). Terminal lipids comprising single (1C2, 1C12) or double (2C12) chain diglycerides were installed to provide differing affinities for albumin and, by extension, albumin trafficking pathways in the lungs. Albumin binding kinetics, cytotoxicity, lung mucus penetration and cellular uptake and permeability through key cellular barriers in the lungs were examined in vitro. The polymers showed good mucus penetration and no cytotoxicity over 24 h at up to 1 mg ml-1. While 1C2-showed no interaction with albumin, 1C12-PMSEA and 2C12-PMSEA bound albumin with KD values of approximately 76 and 10 µM, respectively. Despite binding to albumin, 2C12-PMSEA showed reduced cell uptake and membrane permeability compared to the smaller polymers and the presence of albumin had little effect on cell uptake and membrane permeability. While PMSEA strongly shielded these lipids from albumin, the data suggest that there is scope to tune the lipid component of these systems to control membrane permeability and cellular interactions in the lungs to tailor drug disposition in the lungs.


Subject(s)
Lipids , Humans , Animals , Lipids/chemistry , Polymers/chemistry , Administration, Inhalation , Drug Delivery Systems , Albumins/chemistry , Albumins/metabolism , Lung/metabolism , Protein Binding , Drug Carriers/chemistry
2.
ACS Nano ; 17(9): 8483-8498, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37097065

ABSTRACT

Cancer theranostics that combines cancer diagnosis and therapy is a promising approach for personalized cancer treatment. However, current theranostic strategies suffer from low imaging sensitivity for visualization and an inability to target the diseased tissue site with high specificity, thus hindering their translation to the clinic. In this study, we have developed a tumor microenvironment-responsive hybrid theranostic agent by grafting water-soluble, low-fouling fluoropolymers to pH-responsive zeolitic imidazolate framework-8 (ZIF-8) nanoparticles by surface-initiated RAFT polymerization. The conjugation of the fluoropolymers to ZIF-8 nanoparticles not only allows sensitive in vivo visualization of the nanoparticles by 19F MRI but also significantly prolongs their circulation time in the bloodstream, resulting in improved delivery efficiency to tumor tissue. The ZIF-8-fluoropolymer nanoparticles can respond to the acidic tumor microenvironment, leading to progressive degradation of the nanoparticles and release of zinc ions as well as encapsulated anticancer drugs. The zinc ions released from the ZIF-8 can further coordinate to the fluoropolymers to switch the hydrophilicity and reverse the surface charge of the nanoparticles. This transition in hydrophilicity and surface charge of the polymeric coating can reduce the "stealth-like" nature of the agent and enhance specific uptake by cancer cells. Hence, these hybrid nanoparticles represent intelligent theranostics with highly sensitive imaging capability, significantly prolonged blood circulation time, greatly improved accumulation within the tumor tissue, and enhanced anticancer therapeutic efficiency.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Neoplasms , Humans , Fluorocarbon Polymers/therapeutic use , Metal-Organic Frameworks/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/pathology , Nanoparticles/therapeutic use , Magnetic Resonance Imaging , Hydrophobic and Hydrophilic Interactions , Zinc/therapeutic use , Ions , Tumor Microenvironment
3.
Adv Drug Deliv Rev ; 197: 114822, 2023 06.
Article in English | MEDLINE | ID: mdl-37086918

ABSTRACT

Central nervous system (CNS) disorders affect as many as 1.5 billion people globally. The limited delivery of most imaging and therapeutic agents into the brain is a major challenge for treatment of CNS disorders. With the advent of nanotechnologies, controlled delivery of drugs with nanoparticles holds great promise in CNS disorders for overcoming the blood-brain barrier (BBB) and improving delivery efficacy. In recent years, magnetic iron oxide nanoparticles (MIONPs) have stood out as a promising theranostic nanoplatform for brain imaging and drug delivery as they possess unique physical properties and biodegradable characteristics. In this review, we summarize the recent advances in MIONP-based platforms as imaging and drug delivery agents for brain diseases. We firstly introduce the methods of synthesis and surface functionalization of MIONPs with emphasis on the inclusion of biocompatible polymers that allow for the addition of tailored physicochemical properties. We then discuss the recent advances in in vivo imaging and drug delivery applications using MIONPs. Finally, we present a perspective on the remaining challenges and possible future directions for MIONP-based brain delivery systems.


Subject(s)
Central Nervous System Diseases , Nanoparticles , Humans , Drug Delivery Systems/methods , Brain/diagnostic imaging , Blood-Brain Barrier , Magnetic Iron Oxide Nanoparticles , Pharmaceutical Preparations , Central Nervous System Diseases/drug therapy , Nanoparticles/therapeutic use , Neuroimaging
4.
Adv Sci (Weinh) ; 9(35): e2204476, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36316248

ABSTRACT

Quantum dots (QDs) of formamidinium lead triiodide (FAPbI3 ) perovskite hold great potential, outperforming their inorganic counterparts in terms of phase stability and carrier lifetime, for high-performance solar cells. However, the highly dynamic nature of FAPbI3 QDs, which mainly originates from the proton exchange between oleic acid and oleylamine (OAm) surface ligands, is a key hurdle that impedes the fabrication of high-efficiency solar cells. To tackle such an issue, here, protonated-OAm in situ to strengthen the ligand binding at the surface of FAPbI3 QDs, which can effectively suppress the defect formation during QD synthesis and purification processes is selectively introduced. In addition, by forming a halide-rich surface environment, the ligand density in a broader range for FAPbI3 QDs without compromising their structural integrity, which significantly improves their optoelectronic properties can be modulated. As a result, the power conversion efficiency of FAPbI3 QD solar cells (QDSCs) is enhanced from 7.4% to 13.8%, a record for FAPbI3 QDSCs. Furthermore, the suppressed proton exchange and reduced surface defects in FAPbI3 QDs also enhance the stability of QDSCs, which retain 80% of the initial efficiency upon exposure to ambient air for 3000 hours.

5.
Angew Chem Int Ed Engl ; 61(49): e202213071, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36225164

ABSTRACT

Efficient removal of per- and polyfluoroalkyl substances (PFAS) from contaminated waters is urgently needed to safeguard public and environmental health. In this work, novel magnetic fluorinated polymer sorbents were designed to allow efficient capture of PFAS and fast magnetic recovery of the sorbed material. The new sorbent has superior PFAS removal efficiency compared with the commercially available activated carbon and ion-exchange resins. The removal of the ammonium salt of hexafluoropropylene oxide dimer acid (GenX) reaches >99 % within 30 s, and the estimated sorption capacity was 219 mg g-1 based on the Langmuir model. Robust and efficient regeneration of the magnetic polymer sorbent was confirmed by the repeated sorption and desorption of GenX over four cycles. The sorption of multiple PFAS in two real contaminated water matrices at an environmentally relevant concentration (1 ppb) shows >95 % removal for the majority of PFAS tested in this study.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Fluorocarbon Polymers , Magnetic Phenomena , Water
6.
Biomacromolecules ; 23(10): 4318-4326, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36048616

ABSTRACT

Non-thrombogenic surfaces for extracorporeal membrane oxygenation (ECMO) devices are important to increase their duration of usage and to enable long-term life support. However, the contact of blood with the hydrophobic synthetic ECMO membrane materials such as poly(4-methyl-1-pentene) (PMP) can activate the coagulation cascade, causing thrombosis and a series of consequent complications during ECMO operation. Targeting this problem, we proposed to graft highly hydrophilic sulfoxide polymer brushes onto the PMP surfaces via gamma ray irradiation-initiated polymerization to improve the hemocompatibility of the membrane. Through this chemical modification, the surface of the PMP film is altered from hydrophobic to hydrophilic. The extent of plasma protein adsorption and platelet adhesion, the prerequisite mediators of the coagulation cascade and thrombus formation, are drastically reduced compared with those of the unmodified PMP film. Therefore, the method provides a facile approach to modify PMP materials with excellent antifouling properties and improved hemocompatibility demanded by the applications in ECMO and other blood-contacting medical devices.


Subject(s)
Biofouling , Extracorporeal Membrane Oxygenation , Biofouling/prevention & control , Blood Proteins , Polymers/chemistry , Sulfoxides , Surface Properties
7.
ACS Appl Mater Interfaces ; 14(36): 41400-41411, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36040859

ABSTRACT

Antifouling and antibacterial surfaces that can prevent nonspecific biological adhesion are important to support a myriad of biomedical applications. In this study, we have used an innovative photopolymerization technology to develop sulfur-containing polymer-grafted antifouling and antibacterial surfaces. The relationship between the hydrophilic property and the capability to resist protein and macrophage adsorption of the surface copolymer brushes was investigated. The sulfide monomer incorporated into the surface copolymer brushes can be further ionized to carry positive charges and impart antibacterial activity, leading to surfaces with dual antifouling and antibacterial functions. We believe that the reported sulfur-containing polymer brushes can be considered an emerging and important polymer for antifouling and antibacterial applications.


Subject(s)
Biofouling , Adsorption , Anti-Bacterial Agents/pharmacology , Biofouling/prevention & control , Polymers/pharmacology , Sulfur , Surface Properties
8.
Biomacromolecules ; 23(9): 3866-3874, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35977724

ABSTRACT

Gold nanorods (GNRs) are widely used in various biomedical applications such as disease imaging and therapy due to their unique plasmonic properties. To improve their bioavailability, GNRs often need to be coated with hydrophilic polymers so as to impart stealth properties. Poly(ethylene glycol) (PEG) has been long used as such a coating material for GNRs. However, there is increasing acknowledgement that the amphiphilic nature of PEG facilitates its interaction with protein molecules, leading to immune recognition and consequent side effects. This has motivated the search for new classes of low-fouling polymers with high hydrophilicity as alternative low-fouling surface coating materials for GNRs. Herein, we report the synthesis, characterization, and application of GNRs coated with highly hydrophilic sulfoxide-containing polymers. We investigated the effect of the sulfoxide polymer coating on the cellular uptake and in vivo circulation time of the GNRs and compared these properties with pegylated GNR counterparts. The photothermal effect and photoacoustic imaging of these polymer-coated GNRs were also explored, and the results show that these GNRs are promising as nanotheranostic particles for the treatment of cancer.


Subject(s)
Gold , Nanotubes , Gold/pharmacology , Polymers , Precision Medicine , Sulfoxides
9.
Nat Mater ; 21(9): 1057-1065, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35788569

ABSTRACT

Rechargeable batteries paired with sodium metal anodes are considered to be one of the most promising high-energy and low-cost energy-storage systems. However, the use of highly reactive sodium metal and the formation of sodium dendrites during battery operation have caused safety concerns, especially when highly flammable liquid electrolytes are used. Here we design and develop solvent-free solid polymer electrolytes (SPEs) based on a perfluoropolyether-terminated polyethylene oxide (PEO)-based block copolymer for safe and stable all-solid-state sodium metal batteries. Compared with traditional PEO SPEs, our results suggest that block copolymer design allows for the formation of self-assembled nanostructures leading to high storage modulus at elevated temperatures with the PEO domains providing transport channels even at high salt concentration (ethylene oxide/sodium = 8/2). Moreover, it is demonstrated that the incorporation of perfluoropolyether segments enhances the Na+ transference number of the electrolyte to 0.46 at 80 °C and enables a stable solid electrolyte interface. The new SPE exhibits highly stable symmetric cell-cycling performance at high current density (0.5 mA cm-2 and 1.0 mAh cm-2, up to 1,000 h). Finally, the assembled all-solid-state sodium metal batteries demonstrate outstanding capacity retention, long-term charge/discharge stability (Coulombic efficiency, 99.91%; >900 cycles with Na3V2(PO4)3 cathode) and good capability with high loading NaFePO4 cathode (>1 mAh cm-2).

10.
J Mater Chem B ; 10(26): 4974-4983, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35695541

ABSTRACT

Extracorporeal membrane oxygenation (ECMO), a critical life-sustaining tool, faces significant challenges for the maintenance of normal haemostasis due to the large volume of circulating blood continuously in contact with artificial surfaces, hyperoxia and excessive shear stresses of the extracorporeal circuit. From a biomaterials perspective, it has been hypothesised that drug eluting coatings composed of haemocompatible hydrogels loaded with an anticoagulant drug could potentially enhance the haemocompatibility of the circuit. Poly(ethylene glycol) (PEG) has been well established as a biocompatible and anti-fouling material with wide biomedical application. Unfractionated heparin is the most commonly used anticoagulant for ECMO. In the present study, the feasibility of using heparin-loaded PEG-based hydrogels as anti-thrombogenic surface coatings for ECMO was investigated. The hydrogels were synthesised by photopolymerisation using poly(ethylene glycol) diacrylate (PEGDA) as the crosslinking monomer and poly(ethylene glycol) methacrylate (PEGMA) as the hydrophilic monomer, with heparin loaded into the pre-gel solution. Factors which could affect the release of heparin were investigated, including the ratio of PEGDA/PEGMA, water content, loading level of heparin and the flow of fluid past the hydrogel. Our results showed that increased crosslinker content and decreased water content led to slower heparin release. The hydrogels with water contents of 60 wt% and 70 wt% could achieve a sustained heparin release by adjusting the ratio of PEGDA/PEGMA. The anticoagulation efficacy of the released heparin was evaluated by measuring the activated clotting time of whole blood. The hydrogels with desirable heparin release profiles were prepared onto poly(4-methyl-1-pentene) (PMP) films with the same chemical composition as the PMP ECMO membranes. The coatings showed sustained heparin release with a cumulative release of 70-80% after 7 days. Haemocompatibility tests demonstrated that PEG hydrogel coatings significantly reduced platelet adhesion and prolonged plasma recalcification time. These results suggest that heparin-loaded PEG hydrogels are potential anti-thrombogenic coatings for ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Heparin , Biocompatible Materials/chemistry , Heparin/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Polyethylene Glycols/chemistry , Water
11.
Acta Biomater ; 142: 298-307, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35114374

ABSTRACT

Methotrexate (MTX) is an effective disease modifying anti-rheumatic drug, but can cause significant hepatotoxicity and liver failure in some individuals. The goal of this work was to develop a MTX-conjugated hyperbranched polymeric nanoparticle based on oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and examine its ability to selectively deliver MTX to rheumatic joints while sparing the liver. MTX was conjugated to the hyperbranched polymer via a matrix metalloproteinase-13 cleavable peptide linker. Two populations of nanoparticles were produced, with sizes averaging 20 and 200nm. Tri-peptide (FFK)-modified MTX was liberated in the presence of matrix metalloproteinase 13 (MMP-13)and showed 100 to 1000-fold lower antiproliferative capacity in monocytic THP-1 cells compared to unmodified MTX, depending on whether the gamma-carboxylate of MTX was functionalized with O-tert-butyl. Nanoparticles showed prolonged plasma exposure after intravenous injection with a terminal half-life of approximately 1 day, but incomplete (50%) absorption after subcutaneous administration. Nanoparticles selectively accumulated in inflamed joints in a rat model of rheumatoid arthritis and showed less than 5% biodistribution in the liver after 5 days. MTX-OtBu nanoparticles also showed no hepatocellular toxicity at 500 µM MTX equivalents. This work provides support for the further development of OEGMA-based hyperbranched polymers as MTX drug delivery systems for rheumatoid arthritis. STATEMENT OF SIGNIFICANCE: Nanomedicines containing covalently conjugated methotrexate offer the potential for selective accumulation of the potent hepatotoxic drug in rheumatic joints and limited liver exposure. One limitation of the high surface presentation of methotrexate on a nanoparticle surface, however, is the potential for enhanced liver uptake. We developed several OEGMA-based hyperbranched polymers containing alpha-carboxyl modified and unmodified methotrexate conjugated via an MMP-13 cleavable hexapeptide linker. The modified methotrexate polymer showed promising in vitro and in vivo behavior warranting further development and optimization as an anti-rheumatic nanomedicine. This work presents a new avenue for further research into the development of hyperbranched polymers for rheumatoid arthritis and suggests interesting approaches that may overcome some limitations associated with the translation of anti-rheumatic nanomedicines into patients.


Subject(s)
Arthritis, Rheumatoid , Methotrexate , Animals , Arthritis, Rheumatoid/drug therapy , Humans , Matrix Metalloproteinase 13 , Methotrexate/pharmacology , Methotrexate/therapeutic use , Nanomedicine , Polymers/therapeutic use , Rats , Tissue Distribution
12.
Chem Rev ; 122(1): 167-208, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34609131

ABSTRACT

The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.


Subject(s)
Environmental Restoration and Remediation , Fluorine , Fluorine/chemistry , Humans , Molecular Imaging , Pharmaceutical Preparations , Positron-Emission Tomography
13.
Chem Mater ; 33(16): 6484-6500, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34887621

ABSTRACT

Amyloid aggregation is a ubiquitous form of protein misfolding underlying the pathologies of Alzheimer's disease (AD), Parkinson's disease (PD) and type 2 diabetes (T2D), three primary forms of human amyloid diseases. While much has been learned about the origin, diagnosis and management of these neurological and metabolic disorders, no cure is currently available due in part to the dynamic and heterogeneous nature of the toxic oligomers induced by amyloid aggregation. Here we synthesized beta casein-coated iron oxide nanoparticles (ßCas IONPs) via a BPA-P(OEGA-b-DBM) block copolymer linker. Using a thioflavin T kinetic assay, transmission electron microscopy, Fourier transform infrared spectroscopy, discrete molecular dynamics simulations and cell viability assays, we examined the Janus characteristics and the inhibition potential of ßCas IONPs against the aggregation of amyloid beta (Aß), alpha synuclein (αS) and human islet amyloid polypeptide (IAPP) which are implicated in the pathologies of AD, PD and T2D. Incubation of zebrafish embryos with the amyloid proteins largely inhibited hatching and elicited reactive oxygen species, which were effectively rescued by the inhibitor. Furthermore, Aß-induced damage to mouse brain was mitigated in vivo with the inhibitor. This study revealed the potential of Janus nanoparticles as a new nanomedicine against a diverse range of amyloid diseases.

15.
ACS Appl Bio Mater ; 4(11): 7865-7878, 2021 11 15.
Article in English | MEDLINE | ID: mdl-35006768

ABSTRACT

Oral vaccine has attracted much interest, as it can stimulate both mucosal and systemic immunity with noninvasive and good patient compliance. However, the oral vaccine efficiency is strongly constrained by the low absorption of antigens in the small intestine due to the mucosal barriers. Physicochemical characteristics of nanoparticles (NPs) have strong effects on antigen mucosal penetration, helping to improve immune response. However, surface functions of NPs on mucosal transportation have not been clearly understood. In this work, we elaborately investigated how the surface characteristics of mucoadhesive chitosan and its derivant act on oral antigen absorption and immune response. Core-shell chitosan- and o-carboxymethyl chitosan-coated calcium phosphate (CaP) nanocomposites have been fabricated to investigate the surface property effect on protein antigen delivery using the oral route. The interaction between polymer-coated CaP NPs and the intestinal mucosal layer was studied using mucin absorption, NP diffusion through the mucus layer, NP permeability across the epithelium monolayer, and their cellular uptake by antigen presenting cells in detail. Ex vivo mucosa distribution and in vivo oral immunization of polymer-coated CaP nanocomposites were further examined to demonstrate that the surface property of NPs affects CaP diffusion and penetration through the mucosal layer. As expected, OVA orally delivered by polymer-coated CaP nanocomposites improved the response of mucosal immunity compared to antigen OVA itself in vivo.


Subject(s)
Chitosan , Nanocomposites , Antigens , Calcium Phosphates/metabolism , Humans , Intestinal Mucosa/metabolism , Polysaccharides/metabolism , Vaccination
16.
J Colloid Interface Sci ; 581(Pt A): 185-194, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32771730

ABSTRACT

Biomimetic nanomaterials have attracted tremendous research interest in the past decade. We recently developed biomimetic core-shell nanoparticles - silica nanocapsules, using a designer dual-functional peptide SurSi under room temperature, neutral pH and without use of any toxic reagents or chemicals. The SurSi peptide is designed capable of not only stabilizing nanoemulsions because of its excellent surface activity, but also inducing the formation of silica through biosilicification at an oil-water interface. However, it remains challenging to precisely control the peptide-induced nucleation and biosilicification specifically at the oil-water interface, thus forming oil-core silica-shell nanocapsules with uniform size and monodispersity. In this study, the fundamental mechanism of silica formation through a peptide catalyzed biosilicification was systematically investigated, so that the formation of oil-core silica-shell nanocapsules can be precisely controlled. The SurSi peptide induced hydrolysis and nucleation of biomineralized silica particles were monitored to study the biosilicification kinetics. Effects of pH, SurSi peptide concentration and pre-hydrolysis of silica precursors were also studied to optimize the formation of biomimetic silica nanocapsules. The fundamental understanding achieved through these systematic studies provides valuable insights for making core-shell nanoparticles via controlling nucleation and reaction at interfaces.


Subject(s)
Nanocapsules , Nanoparticles , Biomimetics , Peptides , Silicon Dioxide
17.
Biomacromolecules ; 22(2): 330-339, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33305948

ABSTRACT

Antifouling surfaces are important in a broad range of applications. An effective approach to antifouling surfaces is to covalently attach antifouling polymer brushes. This work reports the synthesis of a new class of antifouling polymer brushes based on highly hydrophilic sulfoxide polymers by surface-initiated photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The sulfoxide polymer brushes are able to effectively reduce nonspecific adsorption of proteins and cells, demonstrating remarkable antifouling properties. Given the outstanding antifouling behavior of the sulfoxide polymers and versatility of surface-initiated PET-RAFT technology, this work presents a useful and general approach to engineering various material surfaces with antifouling properties, for potential biomedical applications in areas such as tissue engineering, medical implants, and regenerative medicine.


Subject(s)
Biofouling , Polymers , Biofouling/prevention & control , Hydrophobic and Hydrophilic Interactions , Polymerization , Sulfoxides , Surface Properties
18.
Nanomaterials (Basel) ; 10(12)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302413

ABSTRACT

A better understanding of the impact of molecular size and linkers is important for PEG-based hyperbranched polymers (HBPs) intended as tailored drug delivery vehicles. This study aimed to evaluate the effects of crosslinker chemistry (cleavable disulphide versus non-cleavable ethylene glycol methacrylate (EGDMA) linkers) and molecular weight within the expected size range for efficient renal elimination (22 vs. 48 kDa) on the intravenous pharmacokinetic and biodistribution properties of 89Zr-labelled HBPs in rats. All HBPs showed similar plasma pharmacokinetics over 72 h, despite differences in linker chemistry and size. A larger proportion of HBP with the cleavable linker was eliminated via the urine and faeces compared to a similar-sized HBP with the non-cleavable linker, while size had no impact on the proportion of the dose excreted. The higher molecular weight HBPs accumulated in organs of the mononuclear phagocyte system (liver and spleen) more avidly than the smaller HBP. These results suggest that HBPs within the 22 to 48 kDa size range show no differences in plasma pharmacokinetics, but distinct patterns of organ biodistribution and elimination are evident.

19.
Pharm Res ; 37(10): 211, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33009588

ABSTRACT

PURPOSE: For patients with intractable cancer-related pain, administration of strong opioid analgesics and adjuvant agents by the intrathecal (i.t.) route in close proximity to the target receptors/ion channels, may restore pain relief. Hence, the aim of this study was to use bioerodable polymers to encapsulate an opioid analgesic (hydromorphone) and an adjuvant drug (ketamine) to produce prolonged-release formulations for i.t. injection. METHODS: A two-stage microfluidic method was used to fabricate nanoparticles (NPs). The physical properties were characterised using dynamic light scattering and transmission electron microscopy. A pilot in vivo study was conducted in a rat model of peripheral neuropathic pain. RESULTS: The in vitro release of encapsulated payload from NPs produced with a polymer mixture (CPP-SA/PLGA 50:50) was sustained for 28 days. In a pilot in vivo study, analgesia was maintained over a three day period following i.t. injection of hydromorphone-loaded NPs at 50 µg. Co-administration of ketamine-loaded NPs at 340 µg did not increase the duration of analgesia significantly. CONCLUSIONS: The two-stage microfluidic method allowed efficient production of analgesic/adjuvant drug-loaded NPs. Our proof-of-principle in vivo study shows prolonged hydromorphone analgesic for 78 h after single i.t. injection. At the i.t. dose administered, ketamine released from NPs was insufficient to augment hydromorphone analgesia.


Subject(s)
Hydromorphone/administration & dosage , Ketamine/administration & dosage , Microfluidics , Nanoparticles/therapeutic use , Pain, Intractable/drug therapy , Analgesics, Opioid/administration & dosage , Animals , Drug Compounding/methods , Injections, Spinal , Lipids/pharmacology , Male , Polymers/therapeutic use , Rats , Rats, Sprague-Dawley
20.
Small ; 16(31): e2002115, 2020 08.
Article in English | MEDLINE | ID: mdl-32608187

ABSTRACT

Nanotheranostics have been actively sought in precision nanomedicine in recent years. However, insufficient tumor accumulation and limited cell uptake often impede the nanotheranostic efficacy. Herein, pH-sensitive charge-reversible polymer-coated layered double hydroxide (LDH) nanohybrids are devised to possess long circulation in blood but reserve surface charges in the weakly acidic tumor tissue to re-expose therapeutic LDH nanoparticles for enhanced tumor accumulation and cell uptake. In vitro experimental data demonstrate that charge-reversible nanohybrids mitigate the cell uptake in physiological conditions (pH 7.4), but remarkably facilitate internalization by tumor cells after charge reversion in the weakly acidic environment (pH 6.8). More significantly, about 6.0% of injected charge-reversible nanohybrids accumulate in the tumor tissue at 24 h post injection, far higher than the average accumulation (0.7%) reported elsewhere for nanoparticles. This high tumor accumulation clearly shows the tumor tissues in T1 -weighted magnetic resonance imaging. As a consequence, >95% inhibition of tumor growth in the B16F0-bearing mouse model is achieved via only one treatment combining RNAi and photothermal therapy under very mild irradiation (808 nm laser, 0.3 W cm-2 for 180 s). The current research thus demonstrates a new strategy to functionalize nanoparticles and simultaneously enhance their tumor accumulation and cell internalization for effective cancer theranostics.


Subject(s)
Nanoparticles , Neoplasms , Animals , Diagnostic Imaging , Hydroxides , Mice , Nanomedicine , Neoplasms/diagnostic imaging , Neoplasms/therapy , Theranostic Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL