Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 926: 171797, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38513870

ABSTRACT

The impact of different operational parameters on the composting efficiency and compost quality during pilot-scale membrane-covered composting (MCC) of food waste (FW) was evaluated. Four factors were assessed in an orthogonal experiment at three different levels: initial mixture moisture (IMM, 55 %, 60 %, and 65 %), aeration time (AT, 6, 9, and 12 h/d), aeration rate (AR, 0.2, 0.4, and 0.6 m3/h) and mature compost addition ratio (MC, 2 %, 4 %, and 6 %). Results indicated that 55 % IMM, 6 h/d AT, 0.4 m3/h AR, and 4 % MC addition ratio simultaneously provided the compost with the maximum cumulative temperature and the minimum moisture. It was shown that the IMM was the driving factor of this optimum composting process. On contrary, the optimal parameters for reducing carbon and nitrogen loss were 65 % IMM, 6 h/d AT, 0.4 m3/h AR, and 2 % MC addition ratio. The AR had the most influence on reducing carbon and nitrogen losses compared to all other factors. The optimal conditions for compost maturity were 55 % IMM, 9 h/d AT, 0.2 m3/h AR, and 6 % MC addition ratio. The primary element influencing the pH and electrical conductivity values was the AR, while the germination index was influenced by IMM. Protein was the main organic matter limiting the composting efficiency. The results of this study will provide guidance for the promotion and application of food waste MCC technology, and contribute to a better understanding of the mechanisms involved in MCC for organic solid waste treatment.


Subject(s)
Composting , Refuse Disposal , Refuse Disposal/methods , Food Loss and Waste , Food , Carbon/analysis , Nitrogen/analysis , Soil
2.
Environ Res ; 249: 118449, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38354880

ABSTRACT

The current study focused on analyzing the effect of different types of bulking agents and other factors on fed-batch composting and the structure of microbial communities. The results indicated that the introduction of bulking agents to fed-batch composting significantly improved composting efficiency as well as compost product quality. In particular, using green waste as a bulking agent, the compost products would achieve good performance in the following indicators: moisture (3.16%), weight loss rate (85.26%), and C/N ratio (13.98). The significant difference in moisture of compost products (p < 0.05) was observed in different sizes of bulking agent (green waste), which was because the voids in green waste significantly affected the capacity of the water to permeate. Meanwhile, controlling the size of green waste at 3-6 mm, the following indicators would show great performance from the compost products: moisture (3.12%), organic matter content (63.93%), and electrical conductivity (EC) (5.37 mS/cm). According to 16S rRNA sequencing, the relative abundance (RA) of thermophilic microbes increased as reactor temperature rose in fed-batch composting, among which Firmicutes, Proteobacteria, Basidiomycota, and Rasamsonia were involved in cellulose and lignocellulose degradation.


Subject(s)
Composting , Composting/methods , Soil Microbiology , RNA, Ribosomal, 16S/analysis , Microbiota , Bacteria/classification , Bacteria/genetics , Soil/chemistry
3.
Article in English | MEDLINE | ID: mdl-38393564

ABSTRACT

Evaluation of the hydrological performance of grassed swales usually needs long-term monitoring data. At present, suitable techniques for simulating the hydrological performance using limited monitoring data are not available. Therefore, current study aims to investigate the relationship between saturated hydraulic conductivity (Ks) fitting results and rainfall characteristics of various events series length. Data from a full-scale grassed swale (Enschede, the Netherlands) were utilized as long-term rainfall event series length (95 rainfall events) on the fitting outcomes. Short-term rainfall event series were extracted from these long-term series and used as input in fitting into a multivariate nonlinear model between Ks and its influencing rainfall indicators (antecedent dry days, temperature, rainfall, rainfall duration, total rainfall, and seasonal factor (spring, summer, autumn, and winter, herein refer as 1, 2, 3, and 4). Comparison of short-term and long-term rainfall event series fitting results allowed to obtain a representative short-term series that leads to similar results with those using long-term series. A cluster analysis was conducted based on the fitting results of the representative rainfall event series with their rainfall event characteristics using average values of influencing rainfall indicators. The seasonal index (average value of seasonal factors) was found to be the most representative short rainfall event series indicator. Furthermore, a Bayesian network was proposed in the current study to predict if a given short-term rainfall event series is representative. It was validated by a data series (58 rainfall events) from another full-scale grassed swale located in Utrecht, the Netherlands. Results revealed that it is quite promising and useful to evaluate the representativeness of short-term rainfall event series used for long-term hydrological performance evaluation of grassed swales.

4.
Article in English | MEDLINE | ID: mdl-38361099

ABSTRACT

This study attempted to determine the influence of diverse green wastes on food waste digestate composting and the improvement of operational conditions. Various effects of the green wastes (GW), with different types and sizes, initial substrate mixture C/N ratios, compost pile heights, and turning frequencies on the food waste digestate (FWD) composting were examined in the current work. The findings showed that the use of street sweeping green waste (SSGW) as an additive can maintain the thermophilic stage of the FWD composting for 28 days, while the end-product contained the greatest amounts of total phosphorus (TP, 2.29%) and total potassium (TK, 4.61%) and the lowest moisture content (14.8%). Crushed SSGW (20 mm) enabled the FWD composting to maintain the longest thermophilic period (28 days), achieving the highest temperature (70.2 °C) and seed germination index (GI, 100%). Adjusting the initial substrate mixture C/N ratio to 25, compost pile height to 30 cm, and turning frequency to three times a day could enhance the efficiency and improve the fertilizer quality of the co-composting of the FWD and SSGW. This study suggested that co-composting of FWD and SSGW (FWD/SSGW = 2.3, wet weight) is a promising technique for the treatment of municipal solid waste and provided significant theoretical data for the application of composting.

5.
J Environ Manage ; 351: 119760, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086124

ABSTRACT

Saturated hydraulic conductivity (Ks) of the filler layer in grassed swales are varying in the changing environment. In most of the hydrological models, Ks is assumed as constant or decrease with a clogging factor. However, the Ks measured on site cannot be the input of the hydrological model directly. Therefore, in this study, an Ensemble Kalman Filter (EnKF) based approach was carried out to estimate the Ks of the whole systems in two monitored grassed swales at Enschede and Utrecht, the Netherlands. The relationship between Ks and possible influencing factors (antecedent dry period, temperature, rainfall, rainfall duration, total rainfall and seasonal factors) were studied and a Multivariate nonlinear function was established to optimize the hydrological model. The results revealed that the EnKF method was satisfying in the Ks estimation, which showed a notable decrease after long-term operation, but revealed a recovery in summer and winter. After the addition of Multivariate nonlinear function of the Ks into hydrological model, 63.8% of the predicted results were optimized among the validation events, and compared with constant Ks. A sensitivity analysis revealed that the effect of each influencing factors on the Ks varies depending on the type of grassed swale. However, these findings require further investigation and data support.


Subject(s)
Poaceae , Soil , Netherlands , Chemical Phenomena , Hydrology
6.
Chemosphere ; 349: 140984, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122944

ABSTRACT

Hydrated electron reaction rate constant (ke-aq) is an important parameter to determine reductive degradation efficiency and to mitigate the ecological risk of organic compounds (OCs). However, OC species morphology and the concentration of hydrated electrons (e-aq) in water vary with pH, complicating OC fate assessment. This study introduced the environmental variable of pH, to develop models for ke-aq for 701 data points using 3 descriptor types: (i) molecular descriptors (MD), (ii) quantum chemical descriptors (QCD), and (iii) the combination of both (MD + QCD). Models were screened using 2 descriptor screening methods (MLR and RF) and 14 machine learning (ML) algorithms. The introduction of QCDs that characterized the electronic structure of OCs greatly improved the performance of models while ensuring the need for fewer descriptors. The optimal model MLR-XGBoost(MD + QCD), which included pH, achieved the most satisfactory prediction: R2tra = 0.988, Q2boot = 0.861, R2test = 0.875 and Q2test = 0.873. The mechanistic interpretation using the SHAP method further revealed that QCDs, polarizability, volume, and pH had a great influence on the reductive degradation of OCs by e-aq. Overall, the electrochemical parameters (QCDs, pH) related to the solvent and solute are of significance and should be considered in any future ML modeling that assesses the fate of OCs in aquatic environment.


Subject(s)
Electrons , Quantitative Structure-Activity Relationship , Organic Chemicals/chemistry , Solutions , Hydrogen-Ion Concentration
7.
Environ Res ; 238(Pt 2): 117190, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37742754

ABSTRACT

A high-quality substrate layer is the cornerstone of supporting that green roofs (GRs) can become an efficient and sustainable nature-based solution to urban environmental problems. In the present study, three lightweight substrate materials commonly used in GRs of peat soil, vermiculite and pumice with four appropriate proportions of the nutrient substrate and the mineral substrates were selected to install twelve substrate modules. The lightweight property, water-holding, nutrient retention and rainwater reduction performance of the substrate modules were investigated by the laboratory determination methods and the simulated rainfall experiment. An assessment model based on the multifunctional performance established by analytic hierarchy process (AHP) was used for the component design optimization of GR substrate layer. The results showed that the substrate modules based on peat soil and vermiculite (PV) as the mineral substrate, which the dry volumetric weights and the average water content were 1.40-1.70 kN m-3 and 47.80%-49.06%, always exhibited better lightweight properties and water-holding performance compared to those composed of pumice. PV-40 had the highest value of the multifunction index even while none of its functional performance was optimal among all the substrate modules. The present study emphasizes the necessity of optimizing the GR substrate layer component based on the assessment of multifunctional performance to better promote the sustainable development of GRs in urban areas.


Subject(s)
Rain , Soil , Soil/chemistry , Aluminum Silicates , Water , Conservation of Natural Resources , Water Movements
8.
Water Res ; 245: 120544, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37703752

ABSTRACT

Internal nutrient loading in shallow lakes has long been known as a key driver of eutrophication, especially after external loading reductions. Earlier efforts have been made to quantity the size and potential release of internal nutrient pools in lakes. Yet, links among substrates, microbial processes, and the size and actual release of internal nutrient pools remain largely unclear. To assess the links, sediment organic matter in Lake Taihu, China, was characterized by combining optical measurements, and lake-wide sediment gross nitrogen (N) transformations were measured using the stable isotope (15N) dilution technique. Meanwhile, respirations and nutrient fluxes across the sediment-water interface (SWI) were measured by conducting intact core continuous-flow incubations. The cause-effect relationships among sediment physicochemical parameters (especially organic matter properties), gross N transformations, extractable nutrient concentrations, and nutrient fluxes across the SWI were revealed by partial least square path models. Results showed that environmental controls on the N transformation rates at different seasons varied, with sediment-derived dissolved organic matter abundance being more important than other variables in driving the rates during summer blooms. This study put a step toward revealing the significant positive effects of sediment organic matter mineralization on porewater nutrient concentrations and then on nutrient fluxes across the SWI at late season. The significant positive correlation between the gross N mineralization rates and ammonium fluxes across the SWI and the estimated considerable volume of net N mineralization in summer further suggested that algal blooms can get substantial inorganic N from sediment N mineralization during the lake N limitation period. Overall, this paper presents new insights into the substrates- and microbial process-driven internal nutrient loading of shallow lakes, which is the fundamental driving force of internal nutrient loading formation.


Subject(s)
Lakes , Phosphorus , Lakes/chemistry , Phosphorus/analysis , Geologic Sediments , Water , Nutrients , Nitrogen/analysis , Eutrophication , China , Environmental Monitoring
9.
Chemosphere ; 340: 139935, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37619750

ABSTRACT

Microbial reductive dechlorination hosts great promise as an in situ bioremediation strategy for polychlorinated biphenyls (PCBs) contamination. However, the slow dechlorination in sediments limits natural attenuation. Short-chain fatty acids, as preferred carbon sources and electron donors for dechlorinating microorganisms, might stimulate PCB dechlorination. Herein, two sets of short-chain fatty acids, sole acetate and a fatty acid mixture (acetate, propionate, and butyrate), were amended periodically into Taihu Lake (China) sediment microcosms containing nine PCB congeners (PCB5, 12, 64, 71, 105, 114, 149, 153, and 170) after 24 weeks of incubation. Short-chain fatty acids facilitated the long-term PCB dechlorination and the promoting effect of the fatty acid mixture compared favorably with that of sole acetate. By the end of 108 weeks, the total PCB mass concentrations in acetate amended and fatty acid mixture amended microcosms significantly declined by 7.6% and 10.3% compared with non-amended microcosms (P < 0.05), respectively. Short-chain fatty acids selectively favored the removal of flanked meta and single-flanked para chlorines. Notably, a rare ortho dechlorination pathway, PCB25 (24-3-CB) to PCB13 (3-4-CB), was enhanced. Supplementary fatty acids significantly increased reductive dehalogenases (RDase) gene pcbA5 instead of improving the growth of Dehalococcoides. These findings highlight the merits of low cost short-chain fatty acids on in situ biostimulation in treating PCBs contamination.


Subject(s)
Microbiota , Polychlorinated Biphenyls , Lakes , Fatty Acids, Volatile , Fatty Acids
10.
Environ Res ; 236(Pt 2): 116809, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37532215

ABSTRACT

Current study focused on investigating the pollution loads of open well, bore well and drinking water from riverine community sites. In addition, drinking and irrigation suitability assessment were also performed by using user specific water quality indices (USWQI) and parameters quality index (PQI). Principal component analysis (PCA) was also performed with physio-chemical parameters. Notable variation was found in most of the water quality parameters at major hamlet and some places exceeded the standards prescribed by authorized organizations. The USWQI was 97.53 to 38.15 in open wells, 96.06 to 68.23 in bore wells, and 88.64 to 74.16 in tap water (drinking water). Among the settlement, highest water quality was recorded at Vilangudi, while the lowest quality found in Karaipakkam area. The predominant drinking water samples were estimated as good quality for human health and hygiene whereas none of the sample was found to be excellent. Open and bore well water samples were of good quality and suitable for agriculture purposes except the few samples which were estimated as poor and fair quality.

11.
Bioresour Technol ; 364: 128106, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36243262

ABSTRACT

Different osmoprotectants were used to counteract ammonia toxicity in continuous anaerobic reactors. The anaerobic microbiome osmoadaptation process and its role to the methanogenic recovery are also assessed. Three osmoprotectants (i.e., glycine betaine, MgCl2 and KCl) were respectively introduced in continuous reactors at high ammonia levels, namely RGB, RMg, RK, while a control reactor (RCtrl) was also used. After ammonia was introduced, the RGB, RMg, RK and RCtrl suffered 39.0%, 36.6%, 39.9% and 36.2% methane production loss, respectively. Osmoprotectants addition recovered significantly methane production by up to 68.9%, 54.3% and 32.2% for RGB, RMg and RK, respectively contrary to RCtrl, where production increased only by 13.6%. The recovered methane production was maintained in RGB and RMg for at least four HRTs, even after the addition of osmoprotectants was stopped, due to the formed methanogenic microbiota by osmoadaptation process, with Methanoculleus sp. as the dominant species.


Subject(s)
Euryarchaeota , Microbiota , Bioreactors , Ammonia , Methane , Anaerobiosis
12.
J Environ Manage ; 302(Pt A): 113956, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34700085

ABSTRACT

Stormwater biofiltration systems (SBS) are a popular technology for mitigating the negative effects of urbanization on the hydrological processes and water quality in urban areas. However, little is known about SBS's long-term performance in actual field conditions. The findings of a review of the scientific literature on the long-term performance of SBS are presented in this paper. The findings show that only a few studies have investigated the performance of SBS and its change over time, and that the results of laboratory and field experiments differed due to the presence of plants, regular maintenance, and some uncertain environmental factors. Based on the existing knowledge gaps in this field, the main challenges observed was the lack of long-term field data series, and the existing mathematical models are not able to accurately forecast the long-term performance of SBS. This could be owing to the difficulties in monitoring activities, the high costs involved and the unpredictability around the operational timeframe. Future study should concentrate on the implementation of simulation and modeling-based research in pilot and full-scale SBS, and the inclusion of new performance indicators should be considered as a priority.


Subject(s)
Filtration , Rain , Models, Theoretical , Plants , Water Quality
13.
Bioresour Technol ; 343: 126146, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34673199

ABSTRACT

This study investigated for the first time if ammonia tolerant methanogenic consortia can be stored in gel (biogel) and used in a later time on-demand as bioaugmentation inocula, to efficiently relieve ammonia inhibition in continuous biomethanation systems. Moreover, wood biochar was assessed as a potential enhancer of the novel biogel bioaugmentation process. Three thermophilic (55 °C), continuous stirred-tank reactors (RBgel, RChar and RMix), operated at 4.5 g NH4+-N L-1 were exposed to biogel, biochar and mixture of biogel and biochar, respectively, while a fourth reactor (RCtrl) was used as control. The results showed that the methane production yields of RMix, RChar and RBgel increased by 28.6%, 20.2% and 10.7%, respectively compared to RCtrl. The highest methane yield was achieved by the synergistic interaction between biogel and biochar. Additionally, biogel stimulated a rapid recovery of Methanoculleus thermophilus sp. and syntrophic acetate oxidising bacteria populations.


Subject(s)
Ammonia , Bioreactors , Anaerobiosis , Charcoal , Methane
14.
Environ Sci Technol ; 56(2): 938-950, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34958198

ABSTRACT

Microbial reductive dechlorination of polychlorinated biphenyls (PCBs) is regarded as an alternative approach for in situ remediation and detoxification in the environment. To better understand the process of PCB dechlorination in freshwater lake sediment, a long-term (108 weeks) dechlorination study was performed in Taihu Lake sediment microcosms with nine parent PCB congeners (PCB5, 12, 64, 71, 105, 114, 149, 153, and 170). Within 108 weeks, the total PCBs declined by 32.8%, while parent PCBs declined by 84.8%. PCB dechlorinators preferred to attack meta- and para-chlorines, principally para-flanked meta and single-flanked para chlorines. A total of 58 dechlorination pathways were observed, and 20 of them were not in 8 processes, suggesting the broad spectrum of PCB dechlorination in the environment. Rare ortho dechlorination was confirmed to target the unflanked ortho chlorine, indicating a potential for complete dechlorination. PCBs drove the shifts of the microbial community structures, and putative dechlorinating bacteria were growth-linked to PCB dechlorination. The distinct jump of RDase genes ardA, rdh12, pcbA4, and pcbA5 was found to be consistent with the commencement of dechlorination. The maintained high level of putative dechlorinating phylum Chloroflexi (including Dehalococcoides and o-17/DF-1), genus Dehalococcoides, and four RDase genes at the end of incubation revealed the long-term dechlorination potential. This work provided insights into dechlorination potential for long-term remediation strategies at PCB-contaminated sites.


Subject(s)
Microbiota , Polychlorinated Biphenyls , Biodegradation, Environmental , Chlorine , Geologic Sediments/chemistry , Lakes , Polychlorinated Biphenyls/metabolism
15.
Water Res ; 207: 117799, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34731669

ABSTRACT

The water environmental recalcitrance and ecotoxicity caused by polychlorinated biphenyls (PCBs) are international issues of common concern. The partition coefficients with PCBs between low-density polyethylene (LDPE) and water (KPE-w) are significant to assess their environmental transport and/or fate in aquatic environment. Even moderately hydrophobic PCBs, however, possess large KPE-w values, which makes directly experimental measurement labored. Here, based on the combination of quantitative structure-property relationships (QSPRs) and machine-learning algorithms, 10 in-silico models are developed to provide a quick estimate of KPE-w. These models exhibit good goodness-of-fit (R2adj: 0.919-0.975), robustness (Q2LOO: 0.870-0.954) and external prediction performances (Q2ext: 0.880-0.971), providing a speedy feasibility to close data gaps for limited or absent experimental information, especially the RF-2 model. Particularly, an additional experimental verification is performed for models by a rapid and accurate three-phase system (aqueous phase, surfactant micelles and LDPE). The results of the experiments for 16 PCBs show the modeling results agree well with experimental values, within or approaching the residuals of ± 0.3 log unit. Mechanism interpretations imply that the number of chlorine atoms and ortho-substituted chlorines are the great effect parameters for KPE-w. This result also heightens interest in measuring and predicting the KPE-w values of chemicals containing halogen atoms in water.


Subject(s)
Polychlorinated Biphenyls , Hydrophobic and Hydrophilic Interactions , Polychlorinated Biphenyls/analysis , Polyethylene , Quantitative Structure-Activity Relationship , Water
16.
Environ Pollut ; 291: 118223, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34583266

ABSTRACT

Knowledge about partitioning constants of hydrophobic organic compounds (HOCs) between the polymer and aqueous phases is critical for assessing chemical environmental fate and transport. The conventional experimental method is characterized by large discrepancies in the measured values due to the limited water solubility of HOCs and other associated issues. In the current work, a novel three-phase partitioning system was evaluated to determine accurate low-density polyethylene (LDPE)-water partition coefficients (KPE-w). By adding sufficient surfactant (Brij 30) to form the micellar pseudo-phase within the polymer/water system, the KPE-w values were obtained from a combination of two experimentally measured values, that is, the micelle-water partition coefficient (Kmic-w) and the LDPE-micelle partition coefficient (KPE-mic). The method presented here is capable of shortening the equilibration time to half a month, and avoiding defects of the traditional method with respect to directly measured aqueous phase concentrations. Herein, the KPE-w values were determined for HOCs with little errors. Meanwhile, based on the 120 experimental KPE-w data, several in silico models were also developed as valid extrapolation tools to estimate missing or uncertain values. Analysis of the underlying solubility interactions in the nonionic surfactant micelles were investigated, providing additional support for the reliability of the proposed method.


Subject(s)
Polyethylene , Water , Hydrophobic and Hydrophilic Interactions , Organic Chemicals , Reproducibility of Results
17.
Chemosphere ; 282: 130708, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34090002

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) and its symbiosis with Canna indica on nitrogen (N) absorption was investigated for the remediation of contaminated soil. Canna indica plants with rhizome and leaf integrity intact were collected in spring and autumn seasons. To maintain the ideal nutrient composition, Hoagland concentrated nutrient solution was diluted with deionized water and additional nutrient solution was added periodically. Treated root samples were observed with an optical microscope and the number of hyphae and intersections as well as inoculation status were examined. High-throughput sequencing experiment was conducted to quantify AMF inoculation. Alpha diversity study was used to characterize abundance and diversity of the symbiosis. Hydroponic experiments were conducted to explore the absorption effectiveness of AMF-Canna symbiosis under different NH4+-N and NO3--N combinations. Hyphal colonization rate was only about 5.66 ± 1.08% in seedling stage in spring, but enhanced in the adult stage in autumn (53.89 ± 1.43%). Results revealed that AMF had no significant impact on NO3--N absorption by Canna roots, however, absorption of NH4+-N was improved by 63% under low concentration. Results revealed that when NH4+-N and NO3--N were applied combinedly in a 1:1 ratio, their respective absorption rates were enhanced to 99.63% and 99.50%. Compared with the case of NH4+-N as N source alone, synergistic effect of NH4+-N and NO3--N significantly changed the absorption of NH4+-N by C. indica, but its correlation with AMF inoculation was still not significant. Current findings could enhance understanding for effective N uptake and resource recovery.


Subject(s)
Mycorrhizae , Zingiberales , Fungi , Nitrogen , Plant Roots , Soil , Symbiosis
18.
J Environ Manage ; 287: 112355, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33740745

ABSTRACT

In the sediment-water system of storm sewers (e.g., sediments, interstitial water, and the water column), the migration of nitrogen and its biological transformation with different dissolved oxygen conditions were investigated. Results showed that in an aerobic segment, γ-proteobacteria, α-proteobacteria, and nitrospira, which are aerobic, grew actively in water column and interstitial water through ammonification and nitrification. In anoxic segment, ammonification depended mainly on clostridia, whereas nitrification was inhibited. Thus, after 20 days, the concentration of NH4+-N in the aerobic segment became noticeably lower (5.97 mg/L) than that in the anoxic segment (18.09 mg/L). In sediments, the biological transformation of organic nitrogen in the anoxic environment was more complete, resulting in elevating amino acid nitrogen and NH4+-N in the anoxic segment compared to the aerobic segment. Furthermore, the concentration gradient of NH4+-N between interstitial water and water column in aerobic and anoxic segments, thereby causing NH4+-N to migrate from interstitial water to the water column. In the sediment-water system, the different forms of nitrogen changes were the common result of biological transformation and material migration.


Subject(s)
Nitrogen , Water , Bacteria , Geologic Sediments , Nitrification
19.
Environ Sci Pollut Res Int ; 27(20): 24902-24913, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32342414

ABSTRACT

Restoration and water quality improvement of malodorous as well as slightly polluted rivers have been the global focus for environmental protection research and the development and construction of sponge cities. To date, constructed wetlands have been proven to be one of efficient methods to improve water quality. Nitrogen removal efficiency is a crucial indicator for the performance evaluation in slightly polluted river water treatment. Therefore, current study aimed to investigate the N removal efficiency of 3-stage surface flow constructed wetlands for water treatment. Results show that after a prolonged operation period, constructed wetlands were able to remove NH4+-N, NO3--N, and TN by 38.4%, 22.3%, and 29.1%, respectively. Further investigations were carried out to investigate the removal efficiency of various N species in the 3-stage wetlands. Findings reveal that NH4+-N was mainly treated in wetland #1 (W1) and wetland #2 (W2), while NO3--N and TN were in wetland #2 (W2) and wetland #3 (W3). Results also reveal that the influencing factors such as hydraulic retention time (HRT), water temperature (WT), and additional carbon source have significant effect on the removal performance of constructed wetlands.


Subject(s)
Nitrogen/analysis , Wetlands , Denitrification , Rivers , Waste Disposal, Fluid , Water Pollution
20.
Environ Sci Pollut Res Int ; 27(15): 17652-17660, 2020 May.
Article in English | MEDLINE | ID: mdl-32189202

ABSTRACT

Bioretention cell (BRC), bioretention cell with microbial fuel cell (BRC-MFC), and an enhanced combined BRC-MFC system with bimetallic zero-valent iron (BRC-MFC-BZVI) were implemented in current study to treat the domestic wastewater. Nitrogen removal characteristics of three systems were investigated by adjusting influent carbon/nitrogen ratio (C/N ratio of 2.54-19.36). Results revealed that the nitrification and denitrification performances were mainly influenced by organic matter and system combination, which further affected nitrogen removal. When the influent C/N ratio was between 2 to 3, compared with BRC system, in BRC-MFC and BRC-MFC-BZVI system, chemical oxygen demand (COD), total nitrogen (TN), and ammonical nitrogen (NH4+-N) removal efficiencies were still reached to 83.04%, 61.06%, and 42.26% and 86.53%, 43.61%, and 50.99% respectively, which simultaneously achieved high-efficiency of organic matter and nitrogen removal. The efficient supply of electrons in the BRC-MFC and BRC-MFC-BZVI processes was the main reason to achieve profound denitrification removal under the condition of low C/N. Removal rates of nitrate (NO3--N) and nitrite (NO2--N) were relatively higher due to microbial-driven redox reactions caused by driving electrons to flow in the closed circuit of metal wire connection. Moreover, phylogenetic diversity of bacterial communities mainly induced the catalytic iron, which further enhanced biological nitrogen reduction. The maximum efficient removal of organic matter (OM), TN, and NH4 + -N were obtained in the BRC-MFC-BZVI system, which were 98.42% (C/N = 10.42), 55.61% (C/N = 4.16), and 61.13% (C/N = 4.16), respectively.


Subject(s)
Nitrogen/analysis , Wastewater , Bioreactors , Carbon , Denitrification , Nitrification , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...