Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 8(1): 9340, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921950

ABSTRACT

The family of materials defined as ZrSiX (X = S, Se, Te) has been established as Dirac node-line semimetals, and subsequent study is urgent to exploit the promising applications of unusual magnetoresistance (MR) properties. Herein, we systematically investigated the anisotropic MR in the newly-discovered Dirac node-line material ZrSiSe. By applying a magnetic field of 3 T by a vector field, three-dimensional (3D) MR shows the strong anisotropy. The MR ratio of maximum and minimum directions reaches 7 at 3 T and keeps increasing at the higher magnetic field. The anisotropic MR forms a butterfly-shaped curve, indicating the quasi-2D electronic structures. This is further confirmed by the angular dependent Shubnikov-de Haas oscillations. The first-principles calculations establish the quasi-2D tubular-shaped Fermi surface near the X point in the Brillouin zone. Our finding sheds light on the 3D mapping of MR and the potential applications in magnetic sensors based on ZrSiSe.

2.
Nanotechnology ; 29(13): 135705, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29432212

ABSTRACT

We fabricated nanodevices from MoxW1-xTe2 (x = 0, 0.07, 0.35), and conducted a systematic comparative study of their electrical transport. Magnetoresistance measurements show that Mo doping can significantly suppress mobility and magnetoresistance. The results for the analysis of the two band model show that doping with Mo does not break the carrier balance. Through analysis of Shubnikov-de Haas oscillations, we found that Mo doping also has a strong suppressive effect on the quantum oscillation of the sample, and the higher the ratio of Mo, the fewer pockets were observed in our experiments. Furthermore, the effective mass of electron and hole increases gradually with increasing Mo ratio, while the corresponding quantum mobility decreases rapidly.

3.
ACS Nano ; 12(2): 1537-1543, 2018 02 27.
Article in English | MEDLINE | ID: mdl-29294273

ABSTRACT

We report the study of a triaxial vector magnetoresistance (MR) in nonmagnetic (Bi1-xInx)2Se3 nanodevices at the composition of x = 0.08. We show a dumbbell-shaped in-plane negative MR up to room temperature as well as a large out-of-plane positive MR. MR at three directions is about in a -3%:-1%:225% ratio at 2 K. Through both the thickness and composition-dependent magnetotransport measurements, we show that the in-plane negative MR is due to the topological phase transition enhanced intersurface coupling near the topological critical point. Our devices suggest the great potential for room-temperature spintronic applications in, for example, vector magnetic sensors.

4.
Sci Bull (Beijing) ; 63(9): 535-541, 2018 May 15.
Article in English | MEDLINE | ID: mdl-36658839

ABSTRACT

Dirac nodal-line semimetals with the linear bands crossing along a line or loop, represent a new topological state of matter. Here, by carrying out magnetotransport measurements and performing first-principle calculations, we demonstrate that such a state has been realized in high-quality single crystals of SrAs3. We obtain the nontrivial π Berry phase by analysing the Shubnikov-de Haas quantum oscillations. We also observe a robust negative longitudinal magnetoresistance induced by the chiral anomaly. Accompanying first-principles calculations identifies that a single hole pocket enclosing the loop nodes is responsible for these observations.

5.
Opt Express ; 26(25): 33057-33065, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30645463

ABSTRACT

The transverse structure of light is recognized as a resource that can be used to encode information onto photons and has been shown to be useful to enhance communication capacity as well as resolve point sources in superresolution imaging. The Laguerre-Gaussian (LG) modes form a complete and orthonormal basis set and are described by a radial index p and an orbital angular momentum (OAM) index ℓ. Earlier works have shown how to build a sorter for the radial index p or/and the OAM index ℓ of LG modes, but a scalable and dedicated LG mode sorter which simultaneous determinate p and ℓ is immature. Here we propose and experimentally demonstrate a scheme to accomplish complete LG mode sorting, which consists of a novel, robust radial mode sorter that can be used to couple radial modes to polarizations, an ℓ-dependent phase shifter and an OAM mode sorter. Our scheme is in principle efficient, scalable, and crosstalk-free, and therefore has potential for applications in optical communications, quantum information technology, superresolution imaging, and fiber optics.

6.
Sci Rep ; 7(1): 12688, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28978938

ABSTRACT

Here we introduce lattice defects in WTe2 by Ga+ implantation (GI), and study the effects of defects on the transport properties and electronic structures of the samples. Theoretical calculation shows that Te Frenkel defects is the dominant defect type, and Raman characterization results agree with this. Electrical transport measurements show that, after GI, significant changes are observed in magnetoresistance and Hall resistance. The classical two-band model analysis shows that both electron and hole concentration are significantly reduced. According to the calculated results, ion implantation leads to significant changes in the band structure and the Fermi surface of the WTe2. Our results indicate that defect engineering is an effective route of controlling the electronic properties of WTe2 devices.

7.
Light Sci Appl ; 6(4): e16251, 2017 Apr.
Article in English | MEDLINE | ID: mdl-30167243

ABSTRACT

The ability to measure the orbital angular momentum (OAM) distribution of vortex light is essential for OAM applications. Although there have been many studies on the measurement of OAM modes, it is difficult to quantitatively and instantaneously measure the power distribution among different OAM modes, let alone measure the phase distribution among them. In this work, we propose an OAM complex spectrum analyzer that enables simultaneous measurements of the power and phase distributions of OAM modes by employing the rotational Doppler effect. The original OAM mode distribution is mapped to an electrical spectrum of beat signals using a photodetector. The power and phase distributions of superimposed OAM beams are successfully retrieved by analyzing the electrical spectrum. We also extend the measurement technique to other spatial modes, such as linear polarization modes. These results represent a new landmark in spatial mode analysis and show great potential for applications in OAM-based systems and optical communication systems with mode-division multiplexing.

8.
Phys Rev Lett ; 119(26): 263602, 2017 Dec 29.
Article in English | MEDLINE | ID: mdl-29328697

ABSTRACT

The Laguerre-Gaussian (LG) modes constitute a complete basis set for representing the transverse structure of a paraxial photon field in free space. Earlier workers have shown how to construct a device for sorting a photon according to its azimuthal LG mode index, which describes the orbital angular momentum (OAM) carried by the field. In this paper we propose and demonstrate a mode sorter based on the fractional Fourier transform to efficiently decompose the optical field according to its radial profile. We experimentally characterize the performance of our implementation by separating individual radial modes as well as superposition states. The reported scheme can, in principle, achieve unit efficiency and thus can be suitable for applications that involve quantum states of light. This approach can be readily combined with existing OAM mode sorters to provide a complete characterization of the transverse profile of the optical field.

9.
Opt Express ; 24(9): 10050-6, 2016 May 02.
Article in English | MEDLINE | ID: mdl-27137615

ABSTRACT

We present a theoretical model to sufficiently investigate the optical rotational Doppler effect based on modal expansion method. We find that the frequency shift content is only determined by the surface of spinning object and the reduced Doppler shift is linear to the difference of mode index between input and output orbital angular momentum (OAM) light, and linear to the rotating speed of spinning object as well. An experiment is carried out to verify the theoretical model. We explicitly suggest that the spatial spiral phase distribution of spinning object determines the frequency content. The theoretical model makes us better understand the physical processes of rotational Doppler effect, and thus has many related application fields, such as detection of rotating bodies, imaging of surface and measurement of OAM light.

10.
Opt Lett ; 40(5): 788-91, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25723433

ABSTRACT

When a vortex beam with a spiral phase structure passes through dynamic angular double slits (ADS), the interference pattern changes alternatively between destructive and constructive at the angular bisector of the ADS. This change is due to their phase difference. Based on this property, we experimentally demonstrate a simple method to precisely and efficiently determine the topological charge of vortex beams. Furthermore, this scheme allows for the simultaneous determination of the modulus and the sign of the topological charge of the vortex beams.

SELECTION OF CITATIONS
SEARCH DETAIL