Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38398899

ABSTRACT

This paper presents a highly integrated C-band RF transceiver front-end design consisting of two Single Pole Double Throw (SPDT) transmit/receive (T/R) switches, a Low Noise Amplifier (LNA), and a Power Amplifier (PA) for Ultra-Wideband (UWB) positioning system applications. When fabricated using a 0.25 µm GaAs pseudomorphic high electron mobility transistor (pHEMT) process, the switch is optimized for system isolation and stability using inductive resonance techniques. The transceiver front-end achieves overall bandwidth expansion as well as the flat noise in receive mode using the bandwidth expansion technique. The results show that the front-end modules (FEM) have a typical gain of 22 dB in transmit mode, 18 dB in receive mode, and 2 dB noise in the 4.5-8 GHz band, with a chip area of 1.56 × 1.46 mm2. Based on the available literature, it is known that the proposed circuit is the most highly integrated C-band RF transceiver front-end design for UWB applications in the same process.

3.
Nucleic Acids Res ; 50(18): 10526-10543, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36134711

ABSTRACT

Transforming growth factor ß (TGF-ß) superfamily proteins are potent regulators of cellular development and differentiation. Nodal/Activin/TGF-ß and BMP ligands are both present in the intra- and extracellular milieu during early development, and cross-talk between these two branches of developmental signaling is currently the subject of intense research focus. Here, we show that the Nodal induced lncRNA-Smad7 regulates cell fate determination via repression of BMP signaling in mouse embryonic stem cells (mESCs). Depletion of lncRNA-Smad7 dramatically impairs cardiomyocyte differentiation in mESCs. Moreover, lncRNA-Smad7 represses Bmp2 expression through binding with the Bmp2 promoter region via (CA)12-repeats that forms an R-loop. Importantly, Bmp2 knockdown rescues defects in cardiomyocyte differentiation induced by lncRNA-Smad7 knockdown. Hence, lncRNA-Smad7 antagonizes BMP signaling in mESCs, and similarly regulates cell fate determination between osteocyte and myocyte formation in C2C12 mouse myoblasts. Moreover, lncRNA-Smad7 associates with hnRNPK in mESCs and hnRNPK binds at the Bmp2 promoter, potentially contributing to Bmp2 expression repression. The antagonistic effects between Nodal/TGF-ß and BMP signaling via lncRNA-Smad7 described in this work provides a framework for understanding cell fate determination in early development.


Subject(s)
RNA, Long Noncoding , Smad7 Protein/metabolism , Activins/metabolism , Activins/pharmacology , Animals , Cell Differentiation , Ligands , Mice , RNA, Long Noncoding/metabolism , Smad7 Protein/genetics , Smad7 Protein/pharmacology , Transforming Growth Factor beta/metabolism
4.
Nat Commun ; 13(1): 3984, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810171

ABSTRACT

TGF-ß family proteins including Nodal are known as central regulators of early development in metazoans, yet our understanding of the scope of Nodal signaling's downstream targets and associated physiological mechanisms in specifying developmentally appropriate cell fates is far from complete. Here, we identified a highly conserved, transmembrane micropeptide-NEMEP-as a direct target of Nodal signaling in mesendoderm differentiation of mouse embryonic stem cells (mESCs), and this micropeptide is essential for mesendoderm differentiation. We showed that NEMEP interacts with the glucose transporters GLUT1/GLUT3 and promotes glucose uptake likely through these interactions. Thus, beyond expanding the scope of known Nodal signaling targets in early development and showing that this target micropeptide augments the glucose uptake during mesendoderm differentiation, our study provides a clear example for the direct functional impact of altered glucose metabolism on cell fate determination.


Subject(s)
Mesoderm , Nodal Protein , Animals , Cell Differentiation , Embryonic Stem Cells/metabolism , Glucose/metabolism , Mesoderm/metabolism , Mice , Nodal Protein/metabolism , Transforming Growth Factor beta/metabolism
5.
Cell Stem Cell ; 29(6): 948-961.e6, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35659877

ABSTRACT

2-cell-like cells (2CLCs)-which comprise only ∼1% of murine embryonic stem cells (mESCs)-resemble blastomeres of 2-cell-stage embryos and are used to investigate zygotic genome activation (ZGA). Here, we discovered that TRIM66 and DAX1 function together as negative regulators of the 2C-like state in mESCs. Chimeric assays confirmed that mESCs lacking TRIM66 or DAX1 function have bidirectional embryonic and extraembryonic differentiation potential. TRIM66 functions by recruiting the co-repressor DAX1 to the Dux promoter, and TRIM66's repressive effect on Dux is dependent on DAX1. A solved crystal structural shows that TRIM66's PHD finger recognizes H3K4-K9me3, and mutational evidence confirmed that TRIM66's PHD finger is essential for its repression of Dux. Thus, beyond expanding the scope of known 2CLC regulators, our study demonstrates that interventions disrupting TRIM66 or DAX1 function in mESCs yield 2CLCs with expanded bidirectional differentiation potential, opening doors for the practical application of these totipotent-like cells.


Subject(s)
Gene Expression Regulation, Developmental , Zygote , Animals , Embryonic Stem Cells , Genome , Mice , Promoter Regions, Genetic
6.
Sensors (Basel) ; 22(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35632210

ABSTRACT

The linearity of active mixers is usually determined by the input transistors, and many works have been proposed to improve it by modified input stages at the cost of a more complex structure or more power consumption. A new linearization method of active mixers is proposed in this paper; the input 1 dB compression point (IP1dB) and output 1 dB compression point (OP1dB) are greatly improved by exploiting the "reverse uplift" phenomenon. Compared with other linearization methods, the proposed one is simpler, more efficient, and sacrifices less conversion gain. Using this method, an ultra-high-linearity double-balanced down-conversion mixer with wide IF bandwidth is designed and fabricated in a 130 nm SiGe BiCMOS process. The proposed mixer includes a Gilbert-cell, a pair of phase-adjusting inductors, and a Marchand-balun-based output network. Under a 1.6 V supply voltage, the measurement results show that the mixer exhibits an excellent IP1dB of +7.2~+10.1 dBm, an average OP1dB of +5.4 dBm, which is the state-of-the-art linearity performance in mixers under a silicon-based process, whether active or passive. Moreover, a wide IF bandwidth of 8 GHz from 3 GHz to 11 GHz was achieved. The circuit consumes 19.8 mW and occupies 0.48 mm2, including all pads. The use of the "reverse uplift" allows us to implement high-linearity circuits more efficiently, which is helpful for the design of 5G high-speed communication transceivers.

7.
EMBO Rep ; 21(12): e49684, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33073493

ABSTRACT

mascRNA is a small cytoplasmic RNA derived from the lncRNA MALAT1. After being processed by the tRNA processing enzymes RNase P and RNase Z, mascRNA undergoes CCA addition like tRNAs and folds into a tRNA-like cloverleaf structure. While MALAT1 functions in multiple cellular processes, the role of mascRNA was largely unknown. Here, we show that mascRNA binds directly to the multi-tRNA synthetase complex (MSC) component glutaminyl-tRNA synthetase (QARS). mascRNA promotes global protein translation and cell proliferation by positively regulating QARS protein levels. Our results uncover a role of mascRNA that is independent of MALAT1, but could be part of the molecular mechanism of MALAT1's function in cancer, and provide a paradigm for understanding tRNA-like structures in mammalian cells.


Subject(s)
RNA, Long Noncoding , RNA, Small Untranslated , Animals , Protein Biosynthesis , RNA Processing, Post-Transcriptional , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism
8.
PLoS One ; 11(10): e0163871, 2016.
Article in English | MEDLINE | ID: mdl-27701456

ABSTRACT

This paper proposes an efficient frequency estimator based on Chinese Remainder Theorem for undersampled waveforms. Due to the emphasis on frequency offset recognition (i.e., frequency shift and compensation) of small-point DFT remainders, compared to estimators using large-point DFT remainders, it can achieve higher noise robustness in low signal-to-noise ratio (SNR) cases and higher accuracy in high SNR cases. Numerical results show that, by incorporating a remainder screening method and the Tsui spectrum corrector, the proposed estimator not only lowers the SNR threshold of detection, but also provides a higher accuracy than the large-point DFT estimator when the DFT size decreases to 1/90 of the latter case.


Subject(s)
Models, Theoretical , Algorithms , Signal Processing, Computer-Assisted , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL