Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurogastroenterol Motil ; 35(3): e14499, 2023 03.
Article in English | MEDLINE | ID: mdl-36377810

ABSTRACT

BACKGROUND: Peripheral corticotropin-releasing factor (CRF) has been reported to affect gastrointestinal motility through corticotropin-releasing factor receptor located in enteric nervous system (ENS), but less is known about of the relationship between peripheral CRF and interstitial cells of Cajal (ICC). METHODS: Mice were intraperitoneally injected with CRF receptor agonists to determine their effects on colonic ICC. Chronic heterotypic stress (CHeS) was applied to mice to determine endogenous CRF-CRF receptor signaling on colonic ICC. RESULTS: We found that stressin1, a selective CRF receptor 1 (CRF1 ) agonist, significantly increased the expression of CRF1 but had no effect on the expression of CRF2 in the smooth muscles of murine colon. The protein expression of c-Kit, Anoctamin-1 (ANO1), and stem cell factor (SCF) in the colonic smooth muscles was significantly decreased in stressin1-treated mice. Accordingly, 2-(4-Chloro-2-methylphenoxy)-N'-(2-methoxybenzylidene) acetohydrazide (Ani 9), a selective ANO1 blocker, had a less significant inhibitory effect on CMMC in stressin1-treated mice compared to the saline-treated ones. Similarly, we also found that ICC and ANO1 were reduced in the colonic smooth muscles of mice by treatment with sauvagine (ip), a CRF2 agonist. However, different with stressin1, sauvagine decreased the expression of CRF2 besides increasing CRF1 expression in the colonic smooth muscles. Similar results of CRF1 and c-Kit expressions were also obtained from the colon of CHeS-treated mice. CONCLUSION: All these results suggest that CRF may be involved in the abnormality of colonic motility through peripheral CRF1 to decrease the number and function of ICC, which provides a potential target for treating stress-induced gastrointestinal motility disorder.


Subject(s)
Interstitial Cells of Cajal , Receptors, Corticotropin-Releasing Hormone , Mice , Animals , Receptors, Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/pharmacology , Interstitial Cells of Cajal/metabolism , Colon/metabolism
2.
Physiol Rep ; 9(21): e15099, 2021 11.
Article in English | MEDLINE | ID: mdl-34755491

ABSTRACT

Our previous study indicated that streptozotocin (STZ)-induced diabetes leads to colonic platelet-derived growth factor receptor-α-positive (PDGFRα+ ) cell proliferation accompanied by slow colonic transit in mice; however, the mechanism of this effect is unclear. The present study used western blotting, immunohistochemistry, and quantitative PCR to investigate whether proteinase-activated receptor 2 (PAR2) mediates PDGFRα+ cell proliferation. Our results showed that PDGFRα, PAR2, and Ki-67 coexpression was increased in the diabetic colonic muscle layer. PDGFRα and PAR2 mRNA and protein expression levels were also markedly enhanced in the diabetic colonic muscle layer. Mice treated with 2-furoyl-LIGRLO-amide (2-F-L-a), a PAR2 agonist, exhibited significant colon elongation and increased smooth muscle weight. In the 2-F-L-a-treated mice, PDGFRα, PAR2, and Ki-67 coexpression was increased and PDGFRα and PAR2 mRNA and protein expression was significantly enhanced in the colonic smooth muscle layer. 2-F-L-a also increased proliferation and PDGFRα expression in NIH/3T3 cells cultured in high glucose, while LY294002, a PI3K antagonist, decreased cell proliferation and PDGFRα expression. PI3K and Akt protein and mRNA expression and p-Akt protein expression in diabetic and 2-F-L-a-treated mice were markedly reduced in colonic smooth muscle. 2-F-L-a also reduced PI3K, Akt, and p-Akt protein expression in NIH/3T3 cells, while the PI3K antagonist LY294002 increased this expression. The results indicate that PAR2 is involved in the proliferation of PDGFRα+ cells through the PI3K/Akt signaling pathway in the colon of STZ-induced diabetic mice, which may contribute to the slow transit and constipation that are associated with diabetes.


Subject(s)
Cell Proliferation , Colon/metabolism , Diabetes Mellitus, Experimental/metabolism , Receptor, PAR-2/metabolism , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Animals , Cells, Cultured , Colon/cytology , Colon/drug effects , Male , Mice , Mice, Inbred ICR , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , NIH 3T3 Cells , Oligopeptides/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, PAR-2/agonists , Receptor, PAR-2/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...