Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animal Model Exp Med ; 6(4): 346-354, 2023 08.
Article in English | MEDLINE | ID: mdl-37431213

ABSTRACT

BACKGROUND: Immunocompromised individuals have an increased risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and severe outcomes, but we pay less attention to these people. Athymic nude mice are a murine strain with a spontaneous deficiency of the Foxn1 gene, which can result in thymic degeneration or its absence, leading to immunosuppression and a decrease in the number of T cells, and are widely used in preclinical evaluations of disease in immunocompromised populations. METHODS: We investigated the protection of the coronavirus disease 2019 (COVID-19) inactivated vaccine (CoronaVac) against the infection of wild-type SARS-CoV-2 (WH-09) or Omicron variant utilizing a hybrid-type nude-hACE2 mouse model. RESULTS: Compared with nude-hACE2/W mice, the viral load in the brain and lung tissue of nude-hACE2 mice (nude-hACE2/WV) infected with WH-09 after vaccination significantly decreased, and the histopathological changes were also reduced. The viral load in the brain and lung tissue of nude-hACE2 mice (nude-hACE2/OV) infected with the Omicron variant after vaccination was lower than that in nude-hACE2/O, but histopathological symptoms did not improve significantly. CONCLUSION: CoronaVac provides some protection against infection of both WH-09 and the Omicron variant in the nude-hACE2 mice. Our findings aimed to provide a reference for vaccination against SARS-CoV-2 in immunocompromised populations.


Subject(s)
COVID-19 , Animals , Mice , COVID-19/prevention & control , Mice, Nude , SARS-CoV-2
2.
Animal Model Exp Med ; 5(5): 430-435, 2022 10.
Article in English | MEDLINE | ID: mdl-35909330

ABSTRACT

The mass inoculation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines to induce herd immunity is one of the most effective measures we can deploy in the fight against coronavirus disease 2019 (COVID-19). Pregnant women are prone to a higher risk of COVID-19, and maternal infection is a risk factor for a range of neurological disorders leading to abnormal behavior in adulthood. However, there are limited clinical data to support whether vaccination or infection post-immunization in pregnant women can affect the behavioral cognition of fetuses in adulthood. In this study, human angiotensin-converting enzyme 2 pregnant mice (F0 generation) were immunized with CoronaVac and then infected with SARS-CoV-2. Subsequently, we analyzed the behavioral cognition of their adult offspring (F1 generation) using the open-field test and Morris water maze test. The adult F1 generation did not exhibit any impairments in spontaneous locomotor activity or spatial reference memory.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adult , Female , Mice , Pregnancy , Animals , COVID-19 Vaccines , COVID-19/prevention & control , Immunity, Herd , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...