Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Biosens Bioelectron ; 264: 116675, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39151262

ABSTRACT

High excitation potential is recognized as a harmful factor for the biological activity of biomacromolecules, such as proteins and nucleic acids, in electrochemiluminescence (ECL) biosensing. Developing low-potential ECL luminophores is vital for improving ECL accuracy in actual sample sensing. In this work, based on porous metal-organic framework (MOF) structure with multiple active sites and energy transfer between the excited ligands and Ln nodes, we designed a series of Ln-MOFs and observed ECL emission at low potential, providing a novel method to realize low-potential ECL. The MOF nanoemitters were prepared using 1,3,5-tri (4-carboxyphenyl)benzene ligand and several lanthanide ions as nodes through mild hydrothermal reaction. Interestingly, strong ECL emission at +0.75 V of peak potential was observed in the ECL-potential curve of Tb-based MOF using 2,2',2″-nitrilotriethanol as coreactant, which was beneficial for reducing background interference in biosensing, and this ECL emission was attributed to the energy transfer between Tb and excited ligand. This low-potential ECL was then applied to construct an ECL biosensor with newly developed Cas12a-based method for selective detection of microRNA-155 without the help of strand displacement or reverse transcription. For this ECL system, the limit of detection was 0.78 nM, and the overall detection time was 2.5 h. The Ln-MOF nanoemitter provides a robust ECL platform to selectively detect various targets by integrating new bio-related techniques.


Subject(s)
Electrochemical Techniques , Luminescent Measurements , Metal-Organic Frameworks , MicroRNAs , Terbium , Humans , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Luminescent Measurements/methods , Metal-Organic Frameworks/chemistry , MicroRNAs/analysis , Terbium/chemistry
2.
ACS Appl Mater Interfaces ; 16(14): 18194-18201, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38532607

ABSTRACT

Electrochemiluminescence (ECL) is a light-emitting process that occurs via an annihilation reaction among energetic radical intermediates, whose stabilities determine the ECL efficiency. In this study, a ligand-dimerized metal-organic framework (MOF) with ultrastable anion radical is designed as an efficient nanoemitter for self-accumulated ECL. Due to the nonplanar structure of perylene diimide (PDI) derivate, two PDI ligands in the framework form a J-dimer unit with a vertical distance of ∼5.74 Å. In cathodic scanning, the ligand-dimerized MOF demonstrates three-step ECL emissions with a gradual increase in ECL intensity. Unlike the decrease in the PDI ligand, the self-accumulated ECL of the MOF was observed with 16.8-fold enhancement due to the excellent stability of radical intermediates in frameworks. Electron paramagnetic resonance demonstrated the ultrastability of free radicals in the designed frameworks, with 82.2% remaining even after one month of storage. Density functional theory calculations supported that PDI dimerization was energetically favorable upon successive electron injection. Moreover, the ECL wavelength is 610 nm, corresponding to the emission of excited dimers. The radical-stabilized reticular nanoemitters open up a new platform for decoding the fundamentals of self-accumulated ECL systems.

3.
Biosens Bioelectron ; 222: 114920, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36470062

ABSTRACT

Coreactant electrochemiluminescence (ECL) is one of the most popular pathways in commercial analysis, which can provide simplicity and convenience for getting intense ECL emission. However, the low efficiency of intermolecular electron transfer could weaken ECL intensity. In this work, we developed an enhanced ECL strategy through in situ coordination interactions between metal-organic framework emitters and coreactants. First, a metal-organic framework (MOF) emitter was synthesized with 1,1,2,2-tetrakis(4-(pyridin-4-yl)phenyl)ethane (TPPE) as aggregation-induced emission linkers and Zn as nodes. Interestingly, compared to TPPE ligand, the resulted MOF nanoemitters demonstrated 49.5 folds enhancement of ECL emission in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as the coreactant. More significantly, different from the constant ECL intensity using TPrA coreactant, DABCO exhibited time-dependent ECL intensity due to the intrareticular electron transfer through coordination interaction between DABCO and Zn2+, which was confirmed by X-ray photoelectron spectroscopy and Fourier transform infrared spectral experiments. The enhanced ECL was then applied to construct a sensitive ECL method to detect dopamine in serum samples. The coordination interaction between emitters and coreactants not only provides a universal way to enhance ECL, but also expands the applications of coreactant ECL system in convenience route.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Luminescent Measurements/methods , Biosensing Techniques/methods , Photometry , Electrochemical Techniques/methods
4.
Chem Commun (Camb) ; 58(82): 11515-11518, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36149384

ABSTRACT

A boron dipyrromethene (BODIPY)-based metal-organic framework (MOF) nanoemitter was for the first time designed with enhanced electrochemiluminescence (ECL) intensity due to the suppression of non-radiative dissipation originating from the ordered arrangement of BODIPY molecules in the framework. Thus, an ECL biosensor was developed for telomerase detection with excellent performance in real samples.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , Telomerase , Boron , Boron Compounds , Electrochemical Techniques , Limit of Detection , Luminescent Measurements , Porphobilinogen/analogs & derivatives
5.
Biosens Bioelectron ; 146: 111743, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31586760

ABSTRACT

Metal-organic frameworks (MOFs) as molecular crystalline materials have been extensively applied in various fields such as catalysis, separation, and biomedical engineering. However, the applications of MOFs materials are limited in electrochemical biosensing due to the poor conductivity, less selectivity, and lack of modification sites. By incorporating the functionalized nanoparticles into MOF structures, MOF-based composites are endowed with high electronic conductivity and strong catalytic activity, which process the advantages over single-component MOFs. With a particular focus on the electrochemical applications of MOF composites, this review summarizes the comprehensive guidelines on design of electroactive MOF composites: dopant modification of electroactive ligands, in situ synthesis of nanoparticle@MOF composites and post-modification of MOF structure. The illustrative examples of electroactive MOF composites in the last five years are highlighted in electrochemical, electrochemiluminescent, and photoelectrochemical biosensing. The prospects and challenges for future work are also included. Understanding the structure-function relationship of electroactive MOF composites benefits the design of next-generation electrochemical biosensors.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Metal-Organic Frameworks/chemistry , Nanocomposites/chemistry , Animals , Electric Conductivity , Equipment Design , Humans , Models, Molecular
6.
Analyst ; 144(2): 691-697, 2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30516182

ABSTRACT

DNA walkers from monopodial to multipedal types have usually one cleavage site to power the walking system along with the track. Herein, a multipedal DNA walker (m-DNA walker) with multiple DNAzyme cores was constructed with the assistance of rolling circle amplification (RCA) for highly sensitive electrochemical biosensing. Firstly, a three-component DNA complex as a swing strand was prepared by integrating a padlock, an RCA primer and a block DNA as a recognition element in the DNA walker system. After ferrocene-labeled track DNA (trDNA) and capture DNA were fixed on a gold electrode, the three-component DNA complex was imported onto the electrode as a swing arm to form a m-DNA walker. In the presence of target DNA and a RCA kit, the block was displaced from the complex and RCA was initiated to form multiple DNAzyme strands. Upon hybridization with trDNA, the m-DNA walker was motivated by the cleavage of multiple DNAzyme cores in the presence of manganese ions to free signal molecules. Under the optimal circumstances, the electrochemical m-DNA walker showed a linear range from 1.0 fM to 1.0 nM with a detection limit of 0.28 fM. Moreover, the m-DNA walker demonstrated a rapid cleavage rate and a low ratio of the swing strand to the track, which is more excellent than a single foot walker and a bipedal DNA walker. The practicality of the proposed strategy was also confirmed by detecting target DNA in 10% human serum, showing promising applications in clinical diagnosis.


Subject(s)
Biosensing Techniques/methods , DNA, Catalytic/genetics , DNA, Catalytic/metabolism , Limit of Detection , Nucleic Acid Amplification Techniques , Base Sequence , Electrochemistry , Feasibility Studies
SELECTION OF CITATIONS
SEARCH DETAIL