Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(29): 15107-15116, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38989541

ABSTRACT

The release of radioactive iodine into the environment poses a significant threat, as it can contaminate soil, water, and food chains, leading to detrimental effects on ecosystems and biodiversity. Hence, employing the adsorption method proves to be a simple yet effective approach for treating radioactive waste. N/O-codoped ultrathin porous biochar, synthesized from casein using NaHCO3 activation, emerges as a potential candidate for adsorption materials. The saturation level of I2 adsorption in 100 mg L-1 iodine-cyclohexane solution is 73 mg·g-1 at 20 min. The density functional theory (DFT) calculations and experiments attribute this phenomenon to the presence of graphite nitrogen (NG) and C-OH groups on the biochar surface. Furthermore, the pseudo-first-order model fits better with the experimental values, suggesting that the adsorption of iodine by the adsorbent is primarily physisorption-based. The Freundlich isotherm is suitable for iodine adsorption of biochar, owing to the abundance of adsorption sites within the porous structure, particularly at the edges, which enhance the adsorption activity. Significantly, the study highlights that NG adsorptive sites exhibit 1.5 times higher adsorption activity compared to C-OH adsorptive sites, underscoring the essential role of NG in iodine adsorption for electron transfer. Overall, these findings underscore the potential of N/O-codoped ultrathin porous biochar in effectively mitigating the presence of radioactive I2, showcasing its promise in addressing environmental challenges associated with radioactive contamination.

2.
Anal Chem ; 96(21): 8682-8688, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38757179

ABSTRACT

Programming ultrasensitive and stimuli-responsive DNAzyme-based probes holds great potential for on-demand biomarker detection. Here, an optically triggered DNAzyme platform was reported for on-demand activation-sensitive electrochemiluminescence (ECL) c-myc mRNA analysis. In this design, the sensing and recognition function of the split DNAzyme (SDz) probe was silent by engineering a blocking sequence containing a photocleavable linker (PC-linker) group at a defined site that could be indirectly cleaved by 302 nm ultraviolet (UV) light. When the SDz probes were assembled on the Au nanoparticles and potassium (K) element doped graphitic carbon nitride nanosheet (K-doped g-C3N4) covered electrode, UV light activation induces the configurational switching and consequently the formation of an active DNAzyme probe with the help of target c-myc mRNA, allowing the cleavage of the substrate strand by magnesium ions (Mg2+). Thus, the release of a ferrocene (Fc)-labeled DNAzyme 2 strand contributed to an extreme ECL signal recovery. In the meantime, the released target c-myc mRNA combined another inactive SDz motif to form active DNAzyme and repeat the cyclic cleavage reaction, resulting in the signal amplification. Furthermore, according to the responses toward two other designed nPC-SDz and m-SDz probes, we demonstrated that controlled UV light mediated photoactivation of the DNAzyme biosensor "on demand" effectively constrained the ECL signal to the mRNA of interest. Moreover, false positive signals could also be avoided due to such a photoactivation design with UV light. Therefore, this study provided a simple methodology that may be broadly applicable for investigating the mRNA-associated physiological events that were difficult to access using traditional DNAzyme probes.


Subject(s)
DNA, Catalytic , Electrochemical Techniques , Luminescent Measurements , RNA, Messenger , DNA, Catalytic/metabolism , DNA, Catalytic/chemistry , Electrochemical Techniques/methods , RNA, Messenger/analysis , Humans , Ultraviolet Rays , Biosensing Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Photochemical Processes , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Graphite/chemistry , Limit of Detection , Nitrogen Compounds
3.
Environ Sci Pollut Res Int ; 30(60): 125526-125539, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37999846

ABSTRACT

Prussian blue (PB) is widely used for the selective removal of radioactive cesium ions (Cs+) from aqueous solutions. Due to its small size and easy dispersion in water, PB requires a carrier that is both inexpensive and easily separable. Magnetic porous biochar (MPBC) was formed by activating starch with FeCl3 through a one-step calcination method. MPBC can be used as a carrier for Prussian blue, which is easily separated from the solution. This composite material (PB/MPBC) has a rich pore structure and maintains effective surface area, which can facilitate the penetration of Cs+ into the adsorbent. Besides, PB/MPBC exhibits high selectivity and good adsorption capacity achieving a large removal capacity of 101.43 mg/g. Thus, this study provides a novel approach for preparing composites with efficient removal of Cs+.


Subject(s)
Cesium , Water Pollutants, Chemical , Cesium/chemistry , Porosity , Adsorption , Water , Ions , Water Pollutants, Chemical/chemistry , Magnetic Phenomena , Kinetics
4.
J Colloid Interface Sci ; 652(Pt B): 1857-1866, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37688932

ABSTRACT

The catalytic conversion of nitrogen to ammonia is one of the most significant processes in nature and the chemical industry. However, the traditional Haber-Bosch process of ammonia synthesis consumes substantial energy and emits a large amount of carbon dioxide. The efficiency of photocatalytic N2 activation is severely limited by the lack of N2 adsorption sites and poor carrier utilization. Herein, an efficient α-Bi2O3/Bi3O4Br heterojunction is proposed with a photocatalytic nitrogen fixation activity of 238.67 µmol·g-1·h-1. Compared with the BiOBr precursor, α-Bi2O3 and Bi3O4Br, the α-Bi2O3/Bi3O4Br heterojunction with oxygen vacancies can improve the adsorption and activation capacity of N2 and promote the separation efficiency of charge carrier pairs by accommodating photogenerated electrons under visible light through the mechanism of N-type semiconductors. Therefore, oxygen vacancies and heterojunction engineering of semiconductive nanomaterials provide a promising method for the rational design of photocatalysts to enhance the rate of ammonia synthesis under mild conditions.

5.
Anal Chem ; 95(17): 7006-7013, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37083199

ABSTRACT

Herein, an electrochemiluminescence (ECL) and electrochemical (EC) dual-mode biosensor platform with a self-powered DNAzyme walking machine was established for accurate and sensitive detection of miRNA-21. By employing a magnesium ion (Mn2+)-dependent DNAzyme cleavage cycling reaction, the walking machine was built by assembling DNAzyme walking strands and ferrocene (Fc)-labeled substrate strands on the Au nanoparticles and graphitic carbon nitride nanosheet (g-C3N4 NS)-covered electrode. The DNAzyme walking strand was first prohibited by a blocker strand. After the addition of target miRNA-21 and Mn2+, the DNAzyme walker could be activated and produce autonomous movements along the electrode track fueled by Mn2+-dependent DNAzyme-catalyzed substrate cleavage without additional energy supply. Notably, each walking step resulted in the cleavage of a substrate strand and the release of a Fc-labeled DNA strand fragment, allowing us to acquire an extreme ECL signal recovery of g-C3N4 inhibited by Fc. Meanwhile, numerous Fc-labeled DNA fragments escaped from the surface of the electrode, directly producing an obvious decrease in the square wave voltammetry (SWV) signal from Fc on the same sensing platform. This work not only avoided difficultly assembling various signal indicators but also significantly improved the sensitivity through using self-powered DNAzyme-walker amplification. Moreover, the proposed design employed the same reaction to produce two signal output modes, which could eliminate the interference from diverse reactive pathways on the outcome to mutually improve the accuracy. Therefore, the dual-mode miRNA-21 biosensor exhibited wide detection ranges of 100 aM to 100 nM with low detection limits of 54.3 and 78.6 aM by ECL and SWV modes, respectively, which provided an efficient and universal biosensing approach with extensive applications in early disease diagnosis and bioanalysis.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Metal Nanoparticles , MicroRNAs , Biosensing Techniques/methods , DNA/metabolism , DNA, Catalytic/metabolism , Electrochemical Techniques/methods , Gold , Limit of Detection , MicroRNAs/analysis , Luminescent Measurements
6.
RSC Adv ; 13(15): 10397-10407, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37020889

ABSTRACT

Excessive tetracycline in the water environment may lead to the harming of human and ecosystem health. Removing tetracycline antibiotics from aqueous solution is currently a most urgent issue. Porous graphitic biochar with an ultra-large surface area was successfully prepared by a one-step method. The effects of activation temperature, activation time, and activator dosage on the structural changes of biochar were investigated by scanning electron microscopy, Brunauer-Emmett-Teller, X-ray powder diffraction, and Raman spectroscopy. The effect of the structure change, adsorption time, temperature, initial pH, and co-existing ions on the tetracycline removal efficiency was also investigated. The results show that temperature had the most potent effect on the specific surface area, pore structure, and extent of graphitization. The ultra-large surface area and pore structure of biochar are critical to the removal of tetracycline. The q e of porous graphitic biochar could reach 1122.2 mg g-1 at room temperature. The calculations of density functional theory indicate that π-π stacking interaction and p-π stacking interaction can enhance the tetracycline adsorption on the ultra-large surface area of graphitic biochar.

7.
J Phys Chem Lett ; 13(26): 6187-6193, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35767660

ABSTRACT

As one of the most promising nonprecious metal catalysts for the oxygen reduction reaction (ORR), the structure of the active site on nitrogen-doped carbon materials is still under debate. Here, we report that the sensitivity of the ORR on the local configuration of multiple nitrogen dopants may be overlooked. Combining global structure searching with density functional theory calculations, we established the structure-activity relationship for 19 and 298 possible configurations of graphitic nitrogen-doped graphene with N content of 2 and 3%, respectively. It was revealed that the stability cannot be a screener to determine the major contributor to the activity. 77.5% of current density is contributed by the active configuration with 4.59% population on the graphene containing 3% nitrogen. It unambiguously demonstrates the configuration sensitivity of N-doped graphene for ORR and opens a new window to identifying the optimal structure of N-doped carbons for various applications.

8.
RSC Adv ; 12(18): 11262-11271, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35425033

ABSTRACT

By controlling the species of the organic sulfur source, CdS samples were produced with different photocatalytic performances by a low-temperature solvothermal method. Different species of the organic sulfur source were chosen as the coordination agent to control the interactions in the crystal growth process. Among them, thioacetamide was the best coordination agent. The hydrophobic chain could be good for reducing the resistance of charge transfer, and increasing the rate of surface charge transfer and the lifetime of the photoexcited electrons. Benefiting from the hydrophobic chain, CdS shows an excellent photocatalytic hydrogen evolution rate of 943.54 µmol h-1 g-1 and a rhodamine B photocatalytic degradation rate of 99.1% in 60 min, which is superior to the photocatalysis of pure CdS prepared by many other methods.

9.
Anal Chem ; 93(44): 14675-14684, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34696580

ABSTRACT

At the molecular level, a large number of studies exist on the use of dynamic DNA molecular circuits for disease diagnosis and biomedicine. However, how to design programmable molecular circuit devices to autonomously and accurately diagnose multiple low-abundance biomolecules in complex cellular environments remains a challenge. Here, we constructed DNAzyme logic circuits for the analysis and imaging of multiple microRNAs in living cells using Cu/ZIF-8 NPs as a nanocarrier of the logic gate modules and the Cu2+ cofactor of the Cu2+-dependent DNAzyme. The logic gate modules of the logic operation system were adsorbed on the surface of Cu/ZIF-8 NPs via electrostatic interaction. After internalization, pH-responsive Cu/ZIF-8 NPs could efficiently release the logic gate modules and Cu2+, which allowed us to realize multiple logic computations initiated by endogenous miRNA, including one YES logic gate and two binary logic gates (OR and AND) in different living cells. Cu2+-DNAzyme logic circuits could quickly respond to multiple endogenous miRNAs in the complex cell environment, which also provided a new research method for the application of DNA biocomputing circuits in living cells.


Subject(s)
DNA, Catalytic , Metal-Organic Frameworks , MicroRNAs , Nanoparticles , Computers, Molecular
10.
Langmuir ; 37(25): 7668-7680, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34126011

ABSTRACT

Polycationic Pp-x@g-C3N4 composite was synthesized through an in situ polymerization process of N-alkylpyridinium acetylenic alcohol bromide (p-x) above the surface of g-C3N4. The structure of p-0 and the Pp-x@g-C3N4 properties were checked by modern technologies. Photocatalytic tests of Pp-x@g-C3N4 in water splitting unveiled much better Pp-x@g-C3N4 hydrogen evolution activities by comparison with both g-C3N4 and Pp-0. The hydrogen production by Pp-0@g-C3N4 was 1654.5 µmol h-1 g-1, which is ∼26- and 22-fold greater in relation to what g-C3N4 and Pp-0 produced (62.7 and 75.0 µmol h-1 g-1, respectively), suggesting strong bilateral and synergistic interactions of g-C3N4 with Pp-0. Although the lengthening methylene chain in the polymers weakened the hydrogen generation ability of Pp-x@g-C3N4, the conjugated double bonds, solubilization, and dispersion of Pp-x polycationic surfactants made Pp-x@g-C3N4 superior to g-C3N4 in water splitting. Due to the readily available raw materials, a simple way of preparation (starting chemicals to p-0 to Pp-0@g-C3N4), high photocatalysis efficiency, light irritation stability, recyclable ability, and low toxicity, Pp-0@g-C3N4 is a good candidate for water splitting.

11.
Phys Chem Chem Phys ; 22(20): 11508-11518, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32393942

ABSTRACT

Electrochemical oxidation is a promising and effective method for lignin depolymerization owing to its selective oxidation capacity and environmental friendliness. Herein, the electrooxidation of non-phenolic alkyl aryl ether monomers and ß-O-4 dimers was experimentally (by cyclic voltammetry, in situ spectroelectrochemistry, and gas chromatography-mass spectroscopy) and theoretically (by DFT calculations) explored in detail. Compared to the reported literature (T. Shiraishi, T. Takano, H. Kamitakahara and F. Nakatsubo, Holzforschung, 2012, 66(3), 303-309), 1-(4-ethoxyphenyl)ethanol showed a distinguishable oxidation pathway, where the resulting carbonyl product surprisingly underwent a bond cleavage on alkyl-aryl ether to ultimately produce a quinoid like compound. In contrast, ß-O-4 dimers, like 2-phenoxy-1-phenethanol and 2-phenoxyacetophenone also demonstrated electrochemical oxidation induced by Cß-O and Cα-Cß bond cleavages. For the oxidation products, the presence of the Cα-hydroxyl group in dimers was the key to selectively generate aldehyde-containing species under mild electrochemical conditions, otherwise it produces alcohol-containing products following a different mechanism compared to the Cα[double bond, length as m-dash]O containing dimers.

12.
ACS Appl Mater Interfaces ; 10(24): 20530-20539, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29847915

ABSTRACT

The electrochemical reduction of CO2 to syngas with a tunable CO/H2 ratio is regarded as an economical and promising method for the future. Herein, a series of earth-abundant Zn catalysts with different crystal facet ratios of Zn(002) to Zn(101) in the bulk phase have been prepared on electrochemically polished Cu foam by the electrochemical deposition method. The Zn catalyst with more (101) crystal facets show good electrochemical activity for the CO2 reduction reaction (CO2RR) to CO and that with more (002) crystal facets favor the hydrogen evolution reaction. The linear relationship between the crystal facet ratio of Zn(101) to Zn(002) and the Faradaic efficiency (FE) of CO2RR to CO has been revealed for the first time. The prepared catalyst with more (101) facets show greater than 85% FE to syngas at -0.9 V (vs reversible hydrogen electrode) in aqueous electrolyte, with tunable CO/H2 ratios ranging from 0.2 to 2.31 that can be used in existing industrial systems. Meanwhile, the mechanism of electroreduction of CO2 on the Zn electrode has been studied by in situ infrared absorption spectroscopy. The highly selective role of the Zn(101) crystal facet in the CO2RR to CO has been evidenced by density functional theory calculations.

13.
J Phys Chem A ; 119(47): 11548-64, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26510818

ABSTRACT

The catalytic mechanism of 2NO + 2CO → N2 + 2CO2 on Rh4 cluster has been systematically investigated on the ground and first excited states at the B3LYP/6-311+G(2d),SDD level. For the overall reaction of 2NO + 2CO → N2 + 2CO2, the main reaction pathways take place on the facet site rather than the edge site of the Rh4 cluster. The turnover frequency (TOF) determining transition states are characteristic of the second N-O bond cleavage with rate constant k4 = 1.403 × 10(11) exp (-181 203/RT) and the N-N bond formation for the intermediate N2O formation with rate constant k2 = 3.762 × 10(12) exp (-207 817/RT). The TOF-determining intermediates of (3)N(b)Rh4NO and (3)N(b)Rh4O(b)(NO) are associated with the nitrogen-atom molecular complex, which is in agreement with the experimental observation of surface nitrogen. On the facet site of Rh4 cluster, the formation of CO2 stems solely from the recombination of CO and O atom, while N2 originates partly from the recombination of two N atoms and partly from the decomposition of N2O. For the N-O bond cleavage or the synchronous N-O bond cleavage and C-O bond formation, the neutral Rh4 cluster exhibits better catalytic performance than the cationic Rh4(+) cluster. Alternatively, for N-N bond formation, the cationic Rh4(+) cluster possesses better catalytic performance than the neutral Rh4 cluster.

14.
J Phys Chem B ; 118(48): 13890-902, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25405722

ABSTRACT

The coordination of cyclic ß-D-glucose (CDG) to both [Al(OH)(aq)](2+) and [Al(OH)2(aq)](1+) ions has been theoretically investigated, using quantum chemical calculations at the PBE0/6-311++G(d,p), aug-cc-pvtz level under polarizable continuum model IEF-PCM, and molecular dynamics simulations. [Al(OH)(aq)](2+) ion prefers to form both six- and five-coordination complexes, and [Al(OH)2(aq)](+) ion to form four-coordination complex. The two kinds of oxygen atoms (on hydroxyl and ring) of CDG can coordinate to both [Al(OH)(aq)](2+) and [Al(OH)2(aq)](+) ions through single-O-ligand and double-O-ligand coordination, wherein there exists some negative charge transfer from the lone pair electron on 2p orbital of the coordinated oxygen atom to the empty 3s orbital of aluminum atom. The charge transfer from both the polarization and H-bond effects stabilizes the coordinated complex. When the CDG coordinates to both [Al(OH)(H2O)4](2+) and [Al(OH)2(H2O)2](1+) ions, the exchange of water with CDG would take place. The six-coordination complex [(ηO4,O6(2)-CDG)Al(OH)(H2O)3](2+) and the five-coordination complex [(ηO4,O6(2)-CDG)Al(OH)2(H2O)](1+) are predicted to be the thermodynamically most preferable, in which the polarization effect plays a crucial role. The molecular dynamics simulations testify the exchange of water with CDG, and then support a five-coordination complex [(ηO4,O6(2)-CDG)Al(OH)2(H2O)](1+) as the predominant form of the CDG coordination to [Al(OH)2(aq)](1+) ion.

SELECTION OF CITATIONS
SEARCH DETAIL