Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 17665, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39085294

ABSTRACT

Diabetes accelerates vascular senescence, which is the basis for atherosclerosis and stiffness. The activation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress are closely associated with the deteriorative senescence in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). For decades, Sodium Tanshinone IIA Sulfonate (STS) has been utilized as a cardiovascular medicine with acknowledged anti-inflammatory and anti-oxidative properties. Nevertheless, the impact of STS on vascular senescence remains unexplored in diabetes. Diabetic mice, primary ECs and VSMCs were transfected with the NLRP3 overexpression/knockout plasmid, the tumor necrosis factor alpha-induced protein 3 (TNFAIP3/A20) overexpression/knockout plasmid, and treated with STS to detect senescence-associated markers. In diabetic mice, STS treatment maintained catalase (CAT) level and vascular relaxation, reduced hydrogen peroxide probe (ROSgreen) fluorescence, p21 immunofluorescence, Senescence ß-Galactosidase Staining (SA-ß-gal) staining area, and collagen deposition in aortas. Mechanistically, STS inhibited NLRP3 phosphorylation (serine 194), NLRP3 dimer formation, NLRP3 expression, and NLRP3-PYCARD (ASC) colocalization. It also suppressed the phosphorylation of IkappaB alpha (IκBα) and NFκB, preserved A20 and CAT levels, reduced ROSgreen density, and decreased the expression of p21 and SA-ß-gal staining in ECs and VSMCs under HG culture. Our findings indicate that STS mitigates vascular senescence by modulating the A20-NFκB-NLRP3 inflammasome-CAT pathway in hyperglycemia conditions, offering novel insights into NLRP3 inflammasome activation and ECs and VSMCs senescence under HG culture. This study highlights the potential mechanism of STS in alleviating senescence in diabetic blood vessels, and provides essential evidence for its future clinical application.


Subject(s)
Cellular Senescence , Diabetes Mellitus, Experimental , Inflammasomes , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Signal Transduction , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Mice , NF-kappa B/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Phenanthrenes/pharmacology , Cellular Senescence/drug effects , Signal Transduction/drug effects , Catalase/metabolism , Male , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice, Inbred C57BL , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects
2.
BMC Cardiovasc Disord ; 24(1): 354, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992615

ABSTRACT

BACKGROUND: Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS: In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS: Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS: These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.


Subject(s)
Disease Models, Animal , Inflammasomes , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Mice, Inbred C57BL , Mice, Knockout, ApoE , NLR Family, Pyrin Domain-Containing 3 Protein , Phenanthrenes , Signal Transduction , Syk Kinase , Vasodilation , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Syk Kinase/metabolism , Matrix Metalloproteinase 2/metabolism , Phenanthrenes/pharmacology , Male , Matrix Metalloproteinase 9/metabolism , Vasodilation/drug effects , Hyperlipidemias/drug therapy , Hyperlipidemias/physiopathology , Vasodilator Agents/pharmacology , Phosphorylation , Mice , Aorta/drug effects , Aorta/physiopathology , Aorta/metabolism , Aorta/enzymology , Apolipoproteins E
3.
Gastroenterol Clin North Am ; 53(3): 413-430, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39068003

ABSTRACT

In this review, the authors outlined concepts and strategies to achieve immune tolerance through inducing hematopoietic chimerism after solid organ transplantation and introduced challenges and opportunities in harnessing two-way alloresponses to improve outcomes after intestinal transplantation (ITx). Next, the authors discussed the dynamics and phenotypes of peripheral blood and intestinal graft T-cell subset chimerism and their association with outcomes. The authors also summarized studies on other types of immune cells after ITx and their potential participation in chimerism-mediated tolerance. The authors further discussed strategies and future directions to promote chimerism-associated tolerance after ITx to overcome rejection and minimize immunosuppression.


Subject(s)
Intestines , Transplantation Chimera , Humans , Intestines/transplantation , Intestines/immunology , Transplantation Chimera/immunology , Transplantation Tolerance/immunology , Chimerism , Organ Transplantation/methods , Graft Rejection/immunology , Graft Rejection/prevention & control , Immune Tolerance
4.
Front Immunol ; 15: 1375486, 2024.
Article in English | MEDLINE | ID: mdl-39007142

ABSTRACT

Introduction: It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of recipient gut lymphocyte populations in immunosuppressed conditions. Methods: Using polychromatic flow cytometry that includes HLA allele group-specific antibodies distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients. Results: We confirm the early presence of naïve donor B cells in the circulation (donor age range: 1-14 years, median: 3 years) and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa (recipient age range at the time of transplant: 1-44 years, median: 3 years). Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection (recipient age range at the time of transplant: 1-9 years, median: 2 years) revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in deceased adult donors. In available pan-scope biopsies from pediatric recipients, we observed higher percentages of naïve recipient B cells in colon allograft compared to small bowel allograft and increased BCR overlap between native colon vs colon allograft compared to that between native colon vs ileum allograft in most cases, suggesting differential clonal distribution in large intestine vs small intestine. Discussion: Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of stabilization of the mucosal B cell repertoire in pediatric ITx patients.


Subject(s)
Intestinal Mucosa , Receptors, Antigen, B-Cell , Humans , Child , Child, Preschool , Adolescent , Infant , Intestinal Mucosa/immunology , Male , Female , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Adult , B-Lymphocytes/immunology , Young Adult , Intestines/immunology , Intestines/transplantation , Organ Transplantation , Graft Rejection/immunology
5.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 892-904, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38733164

ABSTRACT

Diabetes accelerates vascular senescence, which is the basis for atherosclerosis and stiffness. The activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and oxidative stress are closely associated with progressive senescence in vascular smooth muscle cells (VSMCs). The vascular protective effect of FGF21 has gradually gained increasing attention, but its role in diabetes-induced vascular senescence needs further investigation. In this study, diabetic mice and primary VSMCs are transfected with an FGF21 activation plasmid and treated with a peroxisome proliferator-activated receptor γ (PPARγ) agonist (rosiglitazone), an NLRP3 inhibitor (MCC950), and a spleen tyrosine kinase (SYK)-specific inhibitor, R406, to detect senescence-associated markers. We find that FGF21 overexpression significantly restores the level of catalase (CAT), vascular relaxation, inhibits the intensity of ROSgreen fluorescence and p21 immunofluorescence, and reduces the area of SA-ß-gal staining and collagen deposition in the aortas of diabetic mice. FGF21 overexpression restores CAT, inhibits the expression of p21, and limits the area of SA-ß-gal staining in VSMCs under high glucose conditions. Mechanistically, FGF21 inhibits SYK phosphorylation, the production of the NLRP3 dimer, the expression of NLRP3, and the colocalization of NLRP3 with PYCARD (ASC), as well as NLRP3 with caspase-1, to reverse the cleavage of PPARγ, preserve CAT levels, suppress ROSgreen density, and reduce the expression of p21 in VSMCs under high glucose conditions. Our results suggest that FGF21 alleviates vascular senescence by regulating the SYK-NLRP3 inflammasome-PPARγ-catalase pathway in diabetic mice.


Subject(s)
Cellular Senescence , Diabetes Mellitus, Experimental , Fibroblast Growth Factors , Inflammasomes , Mice, Inbred C57BL , Muscle, Smooth, Vascular , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Signal Transduction , Syk Kinase , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Syk Kinase/metabolism , Syk Kinase/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Inflammasomes/metabolism , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Male , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology
6.
Hum Immunol ; 85(4): 110808, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762429

ABSTRACT

Since the first published case study of human intestinal transplantation in 1967, there have been significant studies of intestinal transplant immunology in both animal models and humans. An improved understanding of the profiles of different immune cell subsets is critical for understanding their contributions to graft outcomes. While different studies have focused on the contribution of one or a few subsets to intestinal transplant, no study has integrated these data for a comprehensive overview of immune dynamics after intestinal transplant. Here, we provide a systematic review of the literature on different immune subsets and discuss their roles in intestinal transplant outcomes on multiple levels, focusing on chimerism and graft immune reconstitution, clonal alloreactivity, and cell phenotype. In Sections 1, 2 and 3, we lay out a shared framework for understanding intestinal transplant, focusing on the mechanisms of rejection or tolerance in the context of mucosal immunology and illustrate the unique role of the bidirectional graft-versus-host (GvH) and host-versus-graft (HvG) alloresponse. In Sections 4, 5 and 6, we further expand upon these concepts as we discuss the contribution of different cell subsets to intestinal transplant. An improved understanding of intestinal transplantation immunology will bring us closer to maximizing the potential of this important treatment.


Subject(s)
Graft Rejection , Intestines , Humans , Intestines/immunology , Intestines/transplantation , Animals , Graft Rejection/immunology , Organ Transplantation , Host vs Graft Reaction/immunology , Transplantation Tolerance/immunology , Graft vs Host Reaction/immunology , Transplantation Immunology , Intestinal Mucosa/immunology
7.
Cell Signal ; 119: 111186, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643945

ABSTRACT

Breast cancer is one of the most common cancers threatening women's health. Our previous study found that silibinin induced the death of MCF-7 and MDA-MB-231 human breast cancer cells. We noticed that silibinin-induced cell damage was accompanied by morphological changes, including the increased cell aspect ratio (cell length/width) and decreased cell area. Besides, the cytoskeleton is also destroyed in cells treated with silibinin. YAP/TAZ, a mechanical signal sensor interacted with extracellular pressure, cell adhesion area and cytoskeleton, is also closely associated with cell survival, proliferation and migration. Thus, the involvement of YAP/TAZ in the cytotoxicity of silibinin in breast cancer cells has attracted our interests. Excitingly, we find that silibinin inhibits the nuclear translocation of YAP/TAZ in MCF-7 and MDA-MB-231 cells, and reduces the mRNA expressions of YAP/TAZ target genes, ACVR1, MnSOD and ANKRD. More importantly, expression of YAP1 gene is negatively correlated with the survival of the patients with breast cancers. Molecular docking analysis reveals high probabilities for binding of silibinin to the proteins in the YAP pathways. DARTS and CETSA results confirm the binding abilities of silibinin to YAP and LATS. Inhibiting YAP pathway either by addition of verteporfin, an inhibitor of YAP/TAZ-TEAD, or by transfection of si-RNAs targeting YAP or TAZ further enhances silibinin-induced cell damage. While enhancing YAP activity by silencing LATS1/2 or overexpressing YAPS127/397A, an active form of YAP, attenuates silibinin-induced cell damage. These findings demonstrate that inhibition of the YAP/TAZ pathway contributes to cytotoxicity of silibinin in breast cancers, shedding lights on YAP/TAZ-targeted cancer therapies.


Subject(s)
Breast Neoplasms , Silybin , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Female , Humans , Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , MCF-7 Cells , Molecular Docking Simulation , Phosphoproteins/metabolism , Signal Transduction/drug effects , Silybin/pharmacology , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/antagonists & inhibitors , Transcriptional Coactivator with PDZ-Binding Motif Proteins/drug effects , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism , Verteporfin/pharmacology , YAP-Signaling Proteins/antagonists & inhibitors , YAP-Signaling Proteins/drug effects , YAP-Signaling Proteins/metabolism
8.
EBioMedicine ; 101: 105028, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422982

ABSTRACT

BACKGROUND: Understanding formation of the human tissue resident memory T cell (TRM) repertoire requires longitudinal access to human non-lymphoid tissues. METHODS: By applying flow cytometry and next generation sequencing to serial blood, lymphoid tissue, and gut samples from 16 intestinal transplantation (ITx) patients, we assessed the origin, distribution, and specificity of human TRMs at phenotypic and clonal levels. FINDINGS: Donor age ≥1 year and blood T cell macrochimerism (peak level ≥4%) were associated with delayed establishment of stable recipient TRM repertoires in the transplanted ileum. T cell receptor (TCR) overlap between paired gut and blood repertoires from ITx patients was significantly greater than that in healthy controls, demonstrating increased gut-blood crosstalk after ITx. Crosstalk with the circulating pool remained high for years of follow-up. TCR sequences identifiable in pre-Tx recipient gut but not those in lymphoid tissues alone were more likely to populate post-Tx ileal allografts. Clones detected in both pre-Tx gut and lymphoid tissue had distinct transcriptional profiles from those identifiable in only one tissue. Recipient T cells were distributed widely throughout the gut, including allograft and native colon, which had substantial repertoire overlap. Both alloreactive and microbe-reactive recipient T cells persisted in transplanted ileum, contributing to the TRM repertoire. INTERPRETATION: Our studies reveal human intestinal TRM repertoire establishment from the circulation, preferentially involving lymphoid tissue counterparts of recipient intestinal T cell clones, including TRMs. We have described the temporal and spatial dynamics of this active crosstalk between the circulating pool and the intestinal TRM pool. FUNDING: This study was funded by the National Institute of Allergy and Infectious Diseases (NIAID) P01 grant AI106697.


Subject(s)
Memory T Cells , Receptors, Antigen, T-Cell , Humans , Ileum , Allografts , Immunologic Memory , CD8-Positive T-Lymphocytes
9.
Nat Rev Immunol ; 24(7): 518-535, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38374299

ABSTRACT

Inflammasomes are supramolecular complexes that form in the cytosol in response to pathogen-associated and damage-associated stimuli, as well as other danger signals that perturb cellular homoeostasis, resulting in host defence responses in the form of cytokine release and programmed cell death (pyroptosis). Inflammasome activity is closely associated with numerous human disorders, including rare genetic syndromes of autoinflammation, cardiovascular diseases, neurodegeneration and cancer. In recent years, a range of inflammasome components and their functions have been discovered, contributing to our knowledge of the overall machinery. Here, we review the latest advances in inflammasome biology from the perspective of structural and mechanistic studies. We focus on the most well-studied components of the canonical inflammasome - NAIP-NLRC4, NLRP3, NLRP1, CARD8 and caspase-1 - as well as caspase-4, caspase-5 and caspase-11 of the noncanonical inflammasome, and the inflammasome effectors GSDMD and NINJ1. These structural studies reveal important insights into how inflammasomes are assembled and regulated, and how they elicit the release of IL-1 family cytokines and induce membrane rupture in pyroptosis.


Subject(s)
Inflammasomes , Pyroptosis , Inflammasomes/immunology , Inflammasomes/metabolism , Humans , Pyroptosis/immunology , Animals , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/immunology , CARD Signaling Adaptor Proteins/genetics , Neuronal Apoptosis-Inhibitory Protein/metabolism , Neuronal Apoptosis-Inhibitory Protein/immunology , Neuronal Apoptosis-Inhibitory Protein/genetics , Phosphate-Binding Proteins/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Caspases/metabolism , Caspases/immunology , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/immunology , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/immunology , NLR Proteins/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/immunology , Gasdermins
10.
Food Chem ; 442: 138290, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38219561

ABSTRACT

Colloidal nanoparticles (CNPs), as carriers of nutrients, naturally exist in food or form during cooking. In this study, the colloidal properties, structures, rheological properties, and chemical composition location of CNPs were analyzed during 15 min to 5 h lamb soup stewing. With the increasing stewing time, the particle size and absolute value of the zeta potential of CNPs increased, indicating that CNPs became more stable. As the stewing time increased, the blue-shifted Fourier transform infrared spectroscopy absorption peaks and the red-shifted fluorescence spectroscopy absorption peaks certificated the structural changes in CNPs. And α-helix and ß-turn content decreased, while ß-sheet and random coil content increased in processing, potentially resulting in the opening CNPs structures. In addition, our findings revealed that proteins were encapsulated within the lipids in the inner part, while carbohydrates were dispersed in the outermost layers of the CNPs with a phospholipid bilayer.


Subject(s)
Nanoparticles , Animals , Sheep , Nanoparticles/chemistry , Chemical Phenomena , Particle Size , Carbohydrates , Cooking
11.
J Exp Med ; 221(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38091025

ABSTRACT

The site of transition between tissue-resident memory (TRM) and circulating phenotypes of T cells is unknown. We integrated clonotype, alloreactivity, and gene expression profiles of graft-repopulating recipient T cells in the intestinal mucosa at the single-cell level after human intestinal transplantation. Host-versus-graft (HvG)-reactive T cells were mainly distributed to TRM, effector T (Teff)/TRM, and T follicular helper compartments. RNA velocity analysis demonstrated a trajectory from TRM to Teff/TRM clusters in association with rejection. By integrating pre- and post-transplantation (Tx) mixed lymphocyte reaction-determined alloreactive repertoires, we observed that pre-existing HvG-reactive T cells that demonstrated tolerance in the circulation were dominated by TRM profiles in quiescent allografts. Putative de novo HvG-reactive clones showed a transcriptional profile skewed to cytotoxic effectors in rejecting grafts. Inferred protein regulon network analysis revealed upstream regulators that accounted for the effector and tolerant T cell states. We demonstrate Teff/TRM interchangeability for individual T cell clones with known (allo)recognition in the human gut, providing novel insight into TRM biology.


Subject(s)
Immune Tolerance , T-Lymphocytes , Humans , Transplantation, Homologous , Clone Cells , Immunologic Memory
SELECTION OF CITATIONS
SEARCH DETAIL