Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1406074, 2024.
Article in English | MEDLINE | ID: mdl-38867881

ABSTRACT

Crops were the main source of human food, which have met the increasingly diversified demand of consumers. Sensors were used to monitor crop phenotypes and environmental information in real time, which will provide a theoretical reference for optimizing crop growth environment, resisting biotic and abiotic stresses, and improve crop yield. Compared with non-contact monitoring methods such as optical imaging and remote sensing, wearable sensing technology had higher time and spatial resolution. However, the existing crop sensors were mainly rigid mechanical structures, which were easy to cause damage to crop organs, and there were still challenges in terms of accuracy and biosafety. Emerging flexible sensors had attracted wide attention in the field of crop phenotype monitoring due to their excellent mechanical properties and biocompatibility. The article introduced the key technologies involved in the preparation of flexible wearable sensors from the aspects of flexible preparation materials and advanced preparation processes. The monitoring function of flexible sensors in crop growth was highlighted, including the monitoring of crop nutrient, physiological, ecological and growth environment information. The monitoring principle, performance together with pros and cons of each sensor were analyzed. Furthermore, the future opportunities and challenges of flexible wearable devices in crop monitoring were discussed in detail from the aspects of new sensing theory, sensing materials, sensing structures, wireless power supply technology and agricultural sensor network, which will provide reference for smart agricultural management system based on crop flexible sensors, and realize efficient management of agricultural production and resources.

2.
Food Sci Nutr ; 12(5): 3177-3187, 2024 May.
Article in English | MEDLINE | ID: mdl-38726456

ABSTRACT

The demand for identification of maize varieties has increased dramatically due to the phenomenon of mixed seeds and inferior varieties pretending to be high-quality varieties continuing to occur. It is urgent to solve the problem of efficient and accurate identification of maize varieties. A hyperspectral image acquisition system was used to acquire images of maize seeds. Regions of interest (ROI) with an embryo size of 10 × 10 pixel were extracted, and the average spectral information in the range of 949.43-1709.49 nm was intercepted for the subsequent study in order to eliminate random noise at both ends. Savitzky-Golay (SG) smoothing algorithm and multiple scattering correction (MSC) were used to pretreat the full-band spectrum. The feature wavelengths were screened by successive projection algorithms (SPA), competitive adaptive reweighted sampling (CARS) single screening, and two combinations of CARS-SPA and CARS + SPA, respectively. Support vector machines (SVMs) and models optimized based on genetic algorithm (GA), particle swarm optimization (PSO) were established by using full bands (FB) and feature bands as the model input. The results showed that the MSC-(CARS-SPA)-GA-SVM model had the best performance with 93.00% of the test set accuracy, 8 feature variables, and a running time of 24.45 s. MSC pretreatment can effectively eliminate the scattering effect of spectral data, and the feature wavelengths extracted by CARS-SPA can represent all wavelength information. The study proved that hyperspectral imaging combined with GA-SVM can realize the identification of maize varieties, which provided a theoretical basis for maize variety classification and authenticity identification.

3.
Front Plant Sci ; 14: 1254548, 2023.
Article in English | MEDLINE | ID: mdl-37746016

ABSTRACT

Introduction: As the third largest food crop in the world, maize has wide varieties with similar appearances, which makes identification difficult. To solve the problem of identification of hybrid maize varieties, a method based on hyperspectral image technology combined with a convolutional neural network (CNN) is proposed to identify maize varieties. Methods: In this study, 735 maize seeds from seven half-parent hybrid maize varieties were regarded as the research object. The maize seed images in the range of 900 ~ 1700nm were obtained by hyperspectral image acquisition system. The region of interest (ROI) of the embryo surface was selected, and the spectral reflectance of maize seeds was extracted. After Savitzky-Golay (SG) Smoothing pretreatment, Maximum Normalization (MN) pretreatment was performed. The 56 feature wavelengths were selected by Competitive Adaptive Reweighting Algorithm (CARS) and Successive Projection Algorithm (SPA). And the 56 wavelengths were mapped to high-dimensional space by high-dimensional feature mapping and then reconstructed into three-dimensional image features. A five-layer convolution neural network was used to identify three-dimensional image features, and nine (SG+MN)-(CARS+SPA)-CNN maize variety identification models were established by changing the input feature dimension and the depth factor size of the model layer. Results and Discussion: The results show that the maize variety classification model works best, when the input feature dimension is 768 and the layer depth factor d is 1.0. At this point, the model accuracy of the test set is 96.65% and the detection frame rate is1000 Fps/s in GPU environment, which can realize the rapid and effective non-destructive detection of maize varieties. This study provides a new idea for the rapid and accurate identification of maize seeds and seeds of other crops.

4.
Biomimetics (Basel) ; 7(4)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36546936

ABSTRACT

To solve the technical problem that wheeled vehicles are prone to skidding on complex ground, due to poor adhesion performance, a tire-tread-structure design method based on the bionic principle is proposed in this paper. The 3D model of a goat's foot was obtained using reverse engineering technology, and the curve equation was fitted by extracting the contour data of its outer-hoof flap edge, which was applied to the tire-tread-structure design. The bionic and herringbone-pattern rubber samples were manufactured, and a soil-tank test was carried out using an electronic universal tensile-testing machine, in order to verify the simulation results. The results showed that the overall adhesion of the bionic tread-pattern was greater than that of the normal tread-pattern with the same load applied and the same height and angle of the tread-pattern structure, and the maximum adhesion was increased by 14.23%. This research will provide a reference for optimizing the pattern structure and thus improving the passing performance of wheeled vehicles.

5.
Front Plant Sci ; 13: 1030021, 2022.
Article in English | MEDLINE | ID: mdl-36330245

ABSTRACT

Accurate recognition method of pitaya in natural environment provides technical support for automatic picking. Aiming at the intricate spatial position relationship between pitaya fruits and branches, a pitaya recognition method based on improved YOLOv4 was proposed. GhostNet feature extraction network was used instead of CSPDarkNet53 as the backbone network of YOLOv4. A structure of generating a large number of feature maps through a small amount of calculation was used, and the redundant information in feature layer was obtained with lower computational cost, which can reduce the number of parameters and computation of the model. Coordinate attention was introduced to enhance the extraction of fine-grained feature of targets. An improved combinational convolution module was designed to save computing power and prevent the loss of effective features and improve the recognition accuracy. The Ghost Module was referenced in Yolo Head to improve computing speed and reduce delay. Precision, Recall, F1, AP, detection speed and weight size were selected as performance evaluation indexes of recognition model. 8800 images of pitaya fruit in different environments were used as the dataset, which were randomly divided into the training set, the validation set and the test set according to the ratio of 7:1:2. The research results show that the recognition accuracy of the improved YOLOv4 model for pitaya fruit is 99.23%. Recall, F1 and AP are 95.10%, 98% and 98.94%, respectively. The detection speed is 37.2 frames·s-1, and the weight size is 59.4MB. The improved YOLOv4 recognition algorithm can meet the requirements for the accuracy and the speed of pitaya fruit recognition in natural environment, which will ensure the rapid and accurate operation of the picking robot.

6.
Biomimetics (Basel) ; 7(4)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36412709

ABSTRACT

In order to improve the slope movement stability and flexibility of quadruped robot, a theoretical design method of a flexible spine of a robot that was based on bionics was proposed. The kinematic characteristics of the spine were analyzed under different slopes with a Saanen goat as the research object. A Qualisys track manager (QTM) gait analysis system was used to obtain the trunk movement of goats under multiple slopes, and linear time normalization (LTN) was used to calibrate and match typical gait cycles to characterize the goat locomotion gait under slopes. Firstly, the spatial angle changes of cervical thoracic vertebrae, thoracolumbar vertebrae, and lumbar vertebrae were compared and analyzed under 0°, 5°, 10°, and 15° slopes, and it was found that the rigid and flexible coupling structure between the thoraco-lumbar vertebrae played an obvious role when moving on the slope. Moreover, with the increase in slope, the movement of the spine changed to the coupling movement of thoraco-lumbar coordination movement and a flexible swing of lumbar vertebrae. Then, the Gaussian mixture model (GMM) clustering algorithm was used to analyze the changes of the thoraco-lumbar vertebrae and lumbar vertebrae in different directions. Combined with anatomical knowledge, it was found that the motion of the thoraco-lumbar vertebrae and lumbar vertebrae in the goat was mainly manifested as a left-right swing in the coronal plane. Finally, on the basis of the analysis of the maximin and variation range of the thoraco-lumbar vertebrae and lumbar vertebrae in the coronal plane, it was found that the coupling motion of the thoraco-lumbar cooperative motion and flexible swing of the lumbar vertebrae at the slope of 10° had the most significant effect on the motion stability. SSE, R2, adjusted-R2, and RMSE were used as evaluation indexes, and the general equations of the spatial fitting curve of the goat spine were obtained by curve fitting of Matlab software. Finally, Origin software was used to obtain the optimal fitting spatial equations under eight movements of the goat spine with SSE and adjusted-R2 as indexes. The research will provide an idea for the bionic spine design with variable stiffness and multi-direction flexible bending, as well as a theoretical reference for the torso design of a bionic quadruped robot.

7.
SELECTION OF CITATIONS
SEARCH DETAIL
...